The reason this would never be true is that ideal_processor is a u8 and
THREADPROCESSORID_DEFAULT is an s32. In this case, it boils down to how
arithmetic conversions are performed before performing the comparison.
If an unsigned value has a lesser conversion rank (aka smaller size)
than the signed type being compared, then the unsigned value is promoted
to the signed value (i.e. u8 -> s32 happens before the comparison). No
sign-extension occurs here either.
An alternative phrasing:
Say we have a variable named core and it's given a value of -2.
u8 core = -2;
This becomes 254 due to the lack of sign. During integral promotion to
the signed type, this still remains as 254, and therefore the condition
will always be true, because no matter what value the u8 is given it
will never be -2 in terms of 32 bits.
Now, if one type was a s32 and one was a u32, this would be entirely
different, since they have the same bit width (and the signed type would
be converted to unsigned instead of the other way around) but would
still have its representation preserved in terms of bits, allowing the
comparison to be false in some cases, as opposed to being true all the
time.
---
We also get rid of two signed/unsigned comparison warnings while we're
at it.
Android and macOS have supported thread_local for quite a while, but
most importantly is that we don't even really need it. Instead of using
a thread-local buffer, we can just return a non-static buffer as a
std::string, avoiding the need for that quality entirely.
Previously is_hfs and pfs_header members wouldn't be initialized in the
constructor, as they were stored in locals instead. This would result in
things like GetName() and PrintDebugInfo() behaving incorrectly.
While we're at it, initialize the members to deterministic values as
well, in case loading ever fails.
This makes it a compilation error to construct additional instances of
the System class directly, preventing accidental wasteful constructions
over and over.
This would result in a lot of allocations and related object
construction, just to toss it all away immediately after the call.
These are definitely not intentional, and it was intended that all of
these should have been accessing the static function GetInstance()
through the name itself, not constructed instances.
These operators don't modify internal class state, so they can be made
const member functions. While we're at it, drop the unnecessary inline
keywords. Member functions that are defined in the class declaration are
already inline by default.
This provides the equivalent behavior, but without as much boilerplate.
While we're at it, explicitly default the move constructor, since we
have a move-assignment operator defined.
This doesn't actually modify the internal class state, so it can be a
const member function. While we're at it, amend the function to take
its arguments by const reference.