yuzu/src/core/hle/kernel/process.cpp
Lioncash c0a01f3adc kernel/codeset: Make CodeSet's memory data member a regular std::vector
The use of a shared_ptr is an implementation detail of the VMManager
itself when mapping memory. Because of that, we shouldn't require all
users of the CodeSet to have to allocate the shared_ptr ahead of time.
It's intended that CodeSet simply pass in the required direct data, and
that the memory manager takes care of it from that point on.

This means we just do the shared pointer allocation in a single place,
when loading modules, as opposed to in each loader.
2019-03-22 18:43:46 -04:00

257 lines
9.4 KiB
C++

// Copyright 2015 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include <memory>
#include <random>
#include "common/assert.h"
#include "common/logging/log.h"
#include "core/core.h"
#include "core/file_sys/program_metadata.h"
#include "core/hle/kernel/code_set.h"
#include "core/hle/kernel/errors.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/resource_limit.h"
#include "core/hle/kernel/scheduler.h"
#include "core/hle/kernel/thread.h"
#include "core/hle/kernel/vm_manager.h"
#include "core/memory.h"
#include "core/settings.h"
namespace Kernel {
namespace {
/**
* Sets up the primary application thread
*
* @param owner_process The parent process for the main thread
* @param kernel The kernel instance to create the main thread under.
* @param entry_point The address at which the thread should start execution
* @param priority The priority to give the main thread
*/
void SetupMainThread(Process& owner_process, KernelCore& kernel, VAddr entry_point, u32 priority) {
// Setup page table so we can write to memory
Memory::SetCurrentPageTable(&owner_process.VMManager().page_table);
// Initialize new "main" thread
const VAddr stack_top = owner_process.VMManager().GetTLSIORegionEndAddress();
auto thread_res = Thread::Create(kernel, "main", entry_point, priority, 0,
owner_process.GetIdealCore(), stack_top, owner_process);
SharedPtr<Thread> thread = std::move(thread_res).Unwrap();
// Register 1 must be a handle to the main thread
const Handle guest_handle = owner_process.GetHandleTable().Create(thread).Unwrap();
thread->SetGuestHandle(guest_handle);
thread->GetContext().cpu_registers[1] = guest_handle;
// Threads by default are dormant, wake up the main thread so it runs when the scheduler fires
thread->ResumeFromWait();
}
} // Anonymous namespace
SharedPtr<Process> Process::Create(Core::System& system, std::string&& name) {
auto& kernel = system.Kernel();
SharedPtr<Process> process(new Process(system));
process->name = std::move(name);
process->resource_limit = kernel.GetSystemResourceLimit();
process->status = ProcessStatus::Created;
process->program_id = 0;
process->process_id = kernel.CreateNewProcessID();
process->capabilities.InitializeForMetadatalessProcess();
std::mt19937 rng(Settings::values.rng_seed.value_or(0));
std::uniform_int_distribution<u64> distribution;
std::generate(process->random_entropy.begin(), process->random_entropy.end(),
[&] { return distribution(rng); });
kernel.AppendNewProcess(process);
return process;
}
SharedPtr<ResourceLimit> Process::GetResourceLimit() const {
return resource_limit;
}
ResultCode Process::ClearSignalState() {
if (status == ProcessStatus::Exited) {
LOG_ERROR(Kernel, "called on a terminated process instance.");
return ERR_INVALID_STATE;
}
if (!is_signaled) {
LOG_ERROR(Kernel, "called on a process instance that isn't signaled.");
return ERR_INVALID_STATE;
}
is_signaled = false;
return RESULT_SUCCESS;
}
ResultCode Process::LoadFromMetadata(const FileSys::ProgramMetadata& metadata) {
program_id = metadata.GetTitleID();
ideal_core = metadata.GetMainThreadCore();
is_64bit_process = metadata.Is64BitProgram();
vm_manager.Reset(metadata.GetAddressSpaceType());
const auto& caps = metadata.GetKernelCapabilities();
const auto capability_init_result =
capabilities.InitializeForUserProcess(caps.data(), caps.size(), vm_manager);
if (capability_init_result.IsError()) {
return capability_init_result;
}
return handle_table.SetSize(capabilities.GetHandleTableSize());
}
void Process::Run(VAddr entry_point, s32 main_thread_priority, u32 stack_size) {
// Allocate and map the main thread stack
// TODO(bunnei): This is heap area that should be allocated by the kernel and not mapped as part
// of the user address space.
vm_manager
.MapMemoryBlock(vm_manager.GetTLSIORegionEndAddress() - stack_size,
std::make_shared<std::vector<u8>>(stack_size, 0), 0, stack_size,
MemoryState::Stack)
.Unwrap();
vm_manager.LogLayout();
ChangeStatus(ProcessStatus::Running);
SetupMainThread(*this, kernel, entry_point, main_thread_priority);
}
void Process::PrepareForTermination() {
ChangeStatus(ProcessStatus::Exiting);
const auto stop_threads = [this](const std::vector<SharedPtr<Thread>>& thread_list) {
for (auto& thread : thread_list) {
if (thread->GetOwnerProcess() != this)
continue;
if (thread == system.CurrentScheduler().GetCurrentThread())
continue;
// TODO(Subv): When are the other running/ready threads terminated?
ASSERT_MSG(thread->GetStatus() == ThreadStatus::WaitSynchAny ||
thread->GetStatus() == ThreadStatus::WaitSynchAll,
"Exiting processes with non-waiting threads is currently unimplemented");
thread->Stop();
}
};
stop_threads(system.Scheduler(0).GetThreadList());
stop_threads(system.Scheduler(1).GetThreadList());
stop_threads(system.Scheduler(2).GetThreadList());
stop_threads(system.Scheduler(3).GetThreadList());
ChangeStatus(ProcessStatus::Exited);
}
/**
* Finds a free location for the TLS section of a thread.
* @param tls_slots The TLS page array of the thread's owner process.
* Returns a tuple of (page, slot, alloc_needed) where:
* page: The index of the first allocated TLS page that has free slots.
* slot: The index of the first free slot in the indicated page.
* alloc_needed: Whether there's a need to allocate a new TLS page (All pages are full).
*/
static std::tuple<std::size_t, std::size_t, bool> FindFreeThreadLocalSlot(
const std::vector<std::bitset<8>>& tls_slots) {
// Iterate over all the allocated pages, and try to find one where not all slots are used.
for (std::size_t page = 0; page < tls_slots.size(); ++page) {
const auto& page_tls_slots = tls_slots[page];
if (!page_tls_slots.all()) {
// We found a page with at least one free slot, find which slot it is
for (std::size_t slot = 0; slot < page_tls_slots.size(); ++slot) {
if (!page_tls_slots.test(slot)) {
return std::make_tuple(page, slot, false);
}
}
}
}
return std::make_tuple(0, 0, true);
}
VAddr Process::MarkNextAvailableTLSSlotAsUsed(Thread& thread) {
auto [available_page, available_slot, needs_allocation] = FindFreeThreadLocalSlot(tls_slots);
const VAddr tls_begin = vm_manager.GetTLSIORegionBaseAddress();
if (needs_allocation) {
tls_slots.emplace_back(0); // The page is completely available at the start
available_page = tls_slots.size() - 1;
available_slot = 0; // Use the first slot in the new page
// Allocate some memory from the end of the linear heap for this region.
auto& tls_memory = thread.GetTLSMemory();
tls_memory->insert(tls_memory->end(), Memory::PAGE_SIZE, 0);
vm_manager.RefreshMemoryBlockMappings(tls_memory.get());
vm_manager.MapMemoryBlock(tls_begin + available_page * Memory::PAGE_SIZE, tls_memory, 0,
Memory::PAGE_SIZE, MemoryState::ThreadLocal);
}
tls_slots[available_page].set(available_slot);
return tls_begin + available_page * Memory::PAGE_SIZE + available_slot * Memory::TLS_ENTRY_SIZE;
}
void Process::FreeTLSSlot(VAddr tls_address) {
const VAddr tls_base = tls_address - vm_manager.GetTLSIORegionBaseAddress();
const VAddr tls_page = tls_base / Memory::PAGE_SIZE;
const VAddr tls_slot = (tls_base % Memory::PAGE_SIZE) / Memory::TLS_ENTRY_SIZE;
tls_slots[tls_page].reset(tls_slot);
}
void Process::LoadModule(CodeSet module_, VAddr base_addr) {
const auto memory = std::make_shared<std::vector<u8>>(std::move(module_.memory));
const auto MapSegment = [&](const CodeSet::Segment& segment, VMAPermission permissions,
MemoryState memory_state) {
const auto vma = vm_manager
.MapMemoryBlock(segment.addr + base_addr, memory, segment.offset,
segment.size, memory_state)
.Unwrap();
vm_manager.Reprotect(vma, permissions);
};
// Map CodeSet segments
MapSegment(module_.CodeSegment(), VMAPermission::ReadExecute, MemoryState::Code);
MapSegment(module_.RODataSegment(), VMAPermission::Read, MemoryState::CodeData);
MapSegment(module_.DataSegment(), VMAPermission::ReadWrite, MemoryState::CodeData);
// Clear instruction cache in CPU JIT
system.InvalidateCpuInstructionCaches();
}
Process::Process(Core::System& system)
: WaitObject{system.Kernel()}, address_arbiter{system}, mutex{system}, system{system} {}
Process::~Process() = default;
void Process::Acquire(Thread* thread) {
ASSERT_MSG(!ShouldWait(thread), "Object unavailable!");
}
bool Process::ShouldWait(Thread* thread) const {
return !is_signaled;
}
void Process::ChangeStatus(ProcessStatus new_status) {
if (status == new_status) {
return;
}
status = new_status;
is_signaled = true;
WakeupAllWaitingThreads();
}
} // namespace Kernel