yuzu/src/core/hle/kernel/timer.cpp
Subv 8634b8cb83 Threading: Reworked the way our scheduler works.
Threads will now be awakened when the objects they're waiting on are signaled, instead of repeating the WaitSynchronization call every now and then.

The scheduler is now called once after every SVC call, and once after a thread is awakened from sleep by its timeout callback.

This new implementation is based off reverse-engineering of the real kernel.

See https://gist.github.com/Subv/02f29bd9f1e5deb7aceea1e8f019c8f4 for a more detailed description of how the real kernel handles rescheduling.
2016-12-03 22:38:14 -05:00

106 lines
3 KiB
C++

// Copyright 2015 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <cinttypes>
#include "common/assert.h"
#include "common/logging/log.h"
#include "core/core_timing.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/thread.h"
#include "core/hle/kernel/timer.h"
namespace Kernel {
/// The event type of the generic timer callback event
static int timer_callback_event_type;
// TODO(yuriks): This can be removed if Timer objects are explicitly pooled in the future, allowing
// us to simply use a pool index or similar.
static Kernel::HandleTable timer_callback_handle_table;
Timer::Timer() {}
Timer::~Timer() {}
SharedPtr<Timer> Timer::Create(ResetType reset_type, std::string name) {
SharedPtr<Timer> timer(new Timer);
timer->reset_type = reset_type;
timer->signaled = false;
timer->name = std::move(name);
timer->initial_delay = 0;
timer->interval_delay = 0;
timer->callback_handle = timer_callback_handle_table.Create(timer).MoveFrom();
if (reset_type == ResetType::Pulse) {
LOG_ERROR(Kernel, "Unimplemented timer reset type Pulse");
UNIMPLEMENTED();
}
return timer;
}
bool Timer::ShouldWait() {
return !signaled;
}
void Timer::Acquire() {
ASSERT_MSG(!ShouldWait(), "object unavailable!");
if (reset_type == ResetType::OneShot)
signaled = false;
}
void Timer::Set(s64 initial, s64 interval) {
// Ensure we get rid of any previous scheduled event
Cancel();
initial_delay = initial;
interval_delay = interval;
u64 initial_microseconds = initial / 1000;
CoreTiming::ScheduleEvent(usToCycles(initial_microseconds), timer_callback_event_type,
callback_handle);
}
void Timer::Cancel() {
CoreTiming::UnscheduleEvent(timer_callback_event_type, callback_handle);
}
void Timer::Clear() {
signaled = false;
}
/// The timer callback event, called when a timer is fired
static void TimerCallback(u64 timer_handle, int cycles_late) {
SharedPtr<Timer> timer =
timer_callback_handle_table.Get<Timer>(static_cast<Handle>(timer_handle));
if (timer == nullptr) {
LOG_CRITICAL(Kernel, "Callback fired for invalid timer %08" PRIx64, timer_handle);
return;
}
LOG_TRACE(Kernel, "Timer %08" PRIx64 " fired", timer_handle);
timer->signaled = true;
// Resume all waiting threads
timer->WakeupAllWaitingThreads();
if (timer->interval_delay != 0) {
// Reschedule the timer with the interval delay
u64 interval_microseconds = timer->interval_delay / 1000;
CoreTiming::ScheduleEvent(usToCycles(interval_microseconds) - cycles_late,
timer_callback_event_type, timer_handle);
}
}
void TimersInit() {
timer_callback_handle_table.Clear();
timer_callback_event_type = CoreTiming::RegisterEvent("TimerCallback", TimerCallback);
}
void TimersShutdown() {}
} // namespace