yuzu/src/shader_recompiler/ir_opt/ssa_rewrite_pass.cpp
2023-07-23 11:38:01 -04:00

412 lines
14 KiB
C++

// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
// This file implements the SSA rewriting algorithm proposed in
//
// Simple and Efficient Construction of Static Single Assignment Form.
// Braun M., Buchwald S., Hack S., Leiba R., Mallon C., Zwinkau A. (2013)
// In: Jhala R., De Bosschere K. (eds)
// Compiler Construction. CC 2013.
// Lecture Notes in Computer Science, vol 7791.
// Springer, Berlin, Heidelberg
//
// https://link.springer.com/chapter/10.1007/978-3-642-37051-9_6
//
#include <deque>
#include <map>
#include <span>
#include <unordered_map>
#include <variant>
#include <vector>
#include "shader_recompiler/frontend/ir/basic_block.h"
#include "shader_recompiler/frontend/ir/opcodes.h"
#include "shader_recompiler/frontend/ir/pred.h"
#include "shader_recompiler/frontend/ir/reg.h"
#include "shader_recompiler/frontend/ir/value.h"
#include "shader_recompiler/ir_opt/passes.h"
namespace Shader::Optimization {
namespace {
struct FlagTag {
auto operator<=>(const FlagTag&) const noexcept = default;
};
struct ZeroFlagTag : FlagTag {};
struct SignFlagTag : FlagTag {};
struct CarryFlagTag : FlagTag {};
struct OverflowFlagTag : FlagTag {};
struct GotoVariable : FlagTag {
GotoVariable() = default;
explicit GotoVariable(u32 index_) : index{index_} {}
auto operator<=>(const GotoVariable&) const noexcept = default;
u32 index;
};
struct IndirectBranchVariable {
auto operator<=>(const IndirectBranchVariable&) const noexcept = default;
};
using Variant = std::variant<IR::Reg, IR::Pred, ZeroFlagTag, SignFlagTag, CarryFlagTag,
OverflowFlagTag, GotoVariable, IndirectBranchVariable>;
using ValueMap = std::unordered_map<IR::Block*, IR::Value>;
struct DefTable {
const IR::Value& Def(IR::Block* block, IR::Reg variable) {
return block->SsaRegValue(variable);
}
void SetDef(IR::Block* block, IR::Reg variable, const IR::Value& value) {
block->SetSsaRegValue(variable, value);
}
const IR::Value& Def(IR::Block* block, IR::Pred variable) {
return preds[IR::PredIndex(variable)][block];
}
void SetDef(IR::Block* block, IR::Pred variable, const IR::Value& value) {
preds[IR::PredIndex(variable)].insert_or_assign(block, value);
}
const IR::Value& Def(IR::Block* block, GotoVariable variable) {
return goto_vars[variable.index][block];
}
void SetDef(IR::Block* block, GotoVariable variable, const IR::Value& value) {
goto_vars[variable.index].insert_or_assign(block, value);
}
const IR::Value& Def(IR::Block* block, IndirectBranchVariable) {
return indirect_branch_var[block];
}
void SetDef(IR::Block* block, IndirectBranchVariable, const IR::Value& value) {
indirect_branch_var.insert_or_assign(block, value);
}
const IR::Value& Def(IR::Block* block, ZeroFlagTag) {
return zero_flag[block];
}
void SetDef(IR::Block* block, ZeroFlagTag, const IR::Value& value) {
zero_flag.insert_or_assign(block, value);
}
const IR::Value& Def(IR::Block* block, SignFlagTag) {
return sign_flag[block];
}
void SetDef(IR::Block* block, SignFlagTag, const IR::Value& value) {
sign_flag.insert_or_assign(block, value);
}
const IR::Value& Def(IR::Block* block, CarryFlagTag) {
return carry_flag[block];
}
void SetDef(IR::Block* block, CarryFlagTag, const IR::Value& value) {
carry_flag.insert_or_assign(block, value);
}
const IR::Value& Def(IR::Block* block, OverflowFlagTag) {
return overflow_flag[block];
}
void SetDef(IR::Block* block, OverflowFlagTag, const IR::Value& value) {
overflow_flag.insert_or_assign(block, value);
}
std::array<ValueMap, IR::NUM_USER_PREDS> preds;
std::unordered_map<u32, ValueMap> goto_vars;
ValueMap indirect_branch_var;
ValueMap zero_flag;
ValueMap sign_flag;
ValueMap carry_flag;
ValueMap overflow_flag;
};
IR::Opcode UndefOpcode(IR::Reg) noexcept {
return IR::Opcode::UndefU32;
}
IR::Opcode UndefOpcode(IR::Pred) noexcept {
return IR::Opcode::UndefU1;
}
IR::Opcode UndefOpcode(const FlagTag&) noexcept {
return IR::Opcode::UndefU1;
}
IR::Opcode UndefOpcode(IndirectBranchVariable) noexcept {
return IR::Opcode::UndefU32;
}
enum class Status {
Start,
SetValue,
PreparePhiArgument,
PushPhiArgument,
};
template <typename Type>
struct ReadState {
ReadState(IR::Block* block_) : block{block_} {}
ReadState() = default;
IR::Block* block{};
IR::Value result{};
IR::Inst* phi{};
IR::Block* const* pred_it{};
IR::Block* const* pred_end{};
Status pc{Status::Start};
};
class Pass {
public:
template <typename Type>
void WriteVariable(Type variable, IR::Block* block, const IR::Value& value) {
current_def.SetDef(block, variable, value);
}
template <typename Type>
IR::Value ReadVariable(Type variable, IR::Block* root_block) {
boost::container::small_vector<ReadState<Type>, 64> stack{
ReadState<Type>(nullptr),
ReadState<Type>(root_block),
};
const auto prepare_phi_operand{[&] {
if (stack.back().pred_it == stack.back().pred_end) {
IR::Inst* const phi{stack.back().phi};
IR::Block* const block{stack.back().block};
const IR::Value result{TryRemoveTrivialPhi(*phi, block, UndefOpcode(variable))};
stack.pop_back();
stack.back().result = result;
WriteVariable(variable, block, result);
} else {
IR::Block* const imm_pred{*stack.back().pred_it};
stack.back().pc = Status::PushPhiArgument;
stack.emplace_back(imm_pred);
}
}};
do {
IR::Block* const block{stack.back().block};
switch (stack.back().pc) {
case Status::Start: {
if (const IR::Value& def = current_def.Def(block, variable); !def.IsEmpty()) {
stack.back().result = def;
} else if (!block->IsSsaSealed()) {
// Incomplete CFG
IR::Inst* phi{&*block->PrependNewInst(block->begin(), IR::Opcode::Phi)};
phi->SetFlags(IR::TypeOf(UndefOpcode(variable)));
incomplete_phis[block].insert_or_assign(variable, phi);
stack.back().result = IR::Value{&*phi};
} else if (const std::span imm_preds = block->ImmPredecessors();
imm_preds.size() == 1) {
// Optimize the common case of one predecessor: no phi needed
stack.back().pc = Status::SetValue;
stack.emplace_back(imm_preds.front());
break;
} else {
// Break potential cycles with operandless phi
IR::Inst* const phi{&*block->PrependNewInst(block->begin(), IR::Opcode::Phi)};
phi->SetFlags(IR::TypeOf(UndefOpcode(variable)));
WriteVariable(variable, block, IR::Value{phi});
stack.back().phi = phi;
stack.back().pred_it = imm_preds.data();
stack.back().pred_end = imm_preds.data() + imm_preds.size();
prepare_phi_operand();
break;
}
}
[[fallthrough]];
case Status::SetValue: {
const IR::Value result{stack.back().result};
WriteVariable(variable, block, result);
stack.pop_back();
stack.back().result = result;
break;
}
case Status::PushPhiArgument: {
IR::Inst* const phi{stack.back().phi};
phi->AddPhiOperand(*stack.back().pred_it, stack.back().result);
++stack.back().pred_it;
}
[[fallthrough]];
case Status::PreparePhiArgument:
prepare_phi_operand();
break;
}
} while (stack.size() > 1);
return stack.back().result;
}
void SealBlock(IR::Block* block) {
const auto it{incomplete_phis.find(block)};
if (it != incomplete_phis.end()) {
for (auto& pair : it->second) {
auto& variant{pair.first};
auto& phi{pair.second};
std::visit([&](auto& variable) { AddPhiOperands(variable, *phi, block); }, variant);
}
}
block->SsaSeal();
}
private:
template <typename Type>
IR::Value AddPhiOperands(Type variable, IR::Inst& phi, IR::Block* block) {
for (IR::Block* const imm_pred : block->ImmPredecessors()) {
phi.AddPhiOperand(imm_pred, ReadVariable(variable, imm_pred));
}
return TryRemoveTrivialPhi(phi, block, UndefOpcode(variable));
}
IR::Value TryRemoveTrivialPhi(IR::Inst& phi, IR::Block* block, IR::Opcode undef_opcode) {
IR::Value same;
const size_t num_args{phi.NumArgs()};
for (size_t arg_index = 0; arg_index < num_args; ++arg_index) {
const IR::Value& op{phi.Arg(arg_index)};
if (op.Resolve() == same.Resolve() || op == IR::Value{&phi}) {
// Unique value or self-reference
continue;
}
if (!same.IsEmpty()) {
// The phi merges at least two values: not trivial
return IR::Value{&phi};
}
same = op;
}
// Remove the phi node from the block, it will be reinserted
IR::Block::InstructionList& list{block->Instructions()};
list.erase(IR::Block::InstructionList::s_iterator_to(phi));
// Find the first non-phi instruction and use it as an insertion point
IR::Block::iterator reinsert_point{std::ranges::find_if_not(list, IR::IsPhi)};
if (same.IsEmpty()) {
// The phi is unreachable or in the start block
// Insert an undefined instruction and make it the phi node replacement
// The "phi" node reinsertion point is specified after this instruction
reinsert_point = block->PrependNewInst(reinsert_point, undef_opcode);
same = IR::Value{&*reinsert_point};
++reinsert_point;
}
// Reinsert the phi node and reroute all its uses to the "same" value
list.insert(reinsert_point, phi);
phi.ReplaceUsesWith(same);
// TODO: Try to recursively remove all phi users, which might have become trivial
return same;
}
std::unordered_map<IR::Block*, std::map<Variant, IR::Inst*>> incomplete_phis;
DefTable current_def;
};
void VisitInst(Pass& pass, IR::Block* block, IR::Inst& inst) {
switch (inst.GetOpcode()) {
case IR::Opcode::SetRegister:
if (const IR::Reg reg{inst.Arg(0).Reg()}; reg != IR::Reg::RZ) {
pass.WriteVariable(reg, block, inst.Arg(1));
}
break;
case IR::Opcode::SetPred:
if (const IR::Pred pred{inst.Arg(0).Pred()}; pred != IR::Pred::PT) {
pass.WriteVariable(pred, block, inst.Arg(1));
}
break;
case IR::Opcode::SetGotoVariable:
pass.WriteVariable(GotoVariable{inst.Arg(0).U32()}, block, inst.Arg(1));
break;
case IR::Opcode::SetIndirectBranchVariable:
pass.WriteVariable(IndirectBranchVariable{}, block, inst.Arg(0));
break;
case IR::Opcode::SetZFlag:
pass.WriteVariable(ZeroFlagTag{}, block, inst.Arg(0));
break;
case IR::Opcode::SetSFlag:
pass.WriteVariable(SignFlagTag{}, block, inst.Arg(0));
break;
case IR::Opcode::SetCFlag:
pass.WriteVariable(CarryFlagTag{}, block, inst.Arg(0));
break;
case IR::Opcode::SetOFlag:
pass.WriteVariable(OverflowFlagTag{}, block, inst.Arg(0));
break;
case IR::Opcode::GetRegister:
if (const IR::Reg reg{inst.Arg(0).Reg()}; reg != IR::Reg::RZ) {
inst.ReplaceUsesWith(pass.ReadVariable(reg, block));
}
break;
case IR::Opcode::GetPred:
if (const IR::Pred pred{inst.Arg(0).Pred()}; pred != IR::Pred::PT) {
inst.ReplaceUsesWith(pass.ReadVariable(pred, block));
}
break;
case IR::Opcode::GetGotoVariable:
inst.ReplaceUsesWith(pass.ReadVariable(GotoVariable{inst.Arg(0).U32()}, block));
break;
case IR::Opcode::GetIndirectBranchVariable:
inst.ReplaceUsesWith(pass.ReadVariable(IndirectBranchVariable{}, block));
break;
case IR::Opcode::GetZFlag:
inst.ReplaceUsesWith(pass.ReadVariable(ZeroFlagTag{}, block));
break;
case IR::Opcode::GetSFlag:
inst.ReplaceUsesWith(pass.ReadVariable(SignFlagTag{}, block));
break;
case IR::Opcode::GetCFlag:
inst.ReplaceUsesWith(pass.ReadVariable(CarryFlagTag{}, block));
break;
case IR::Opcode::GetOFlag:
inst.ReplaceUsesWith(pass.ReadVariable(OverflowFlagTag{}, block));
break;
default:
break;
}
}
void VisitBlock(Pass& pass, IR::Block* block) {
for (IR::Inst& inst : block->Instructions()) {
VisitInst(pass, block, inst);
}
pass.SealBlock(block);
}
IR::Type GetConcreteType(IR::Inst* inst) {
std::deque<IR::Inst*> queue;
queue.push_back(inst);
while (!queue.empty()) {
IR::Inst* current = queue.front();
queue.pop_front();
const size_t num_args{current->NumArgs()};
for (size_t i = 0; i < num_args; ++i) {
const auto set_type = current->Arg(i).Type();
if (set_type != IR::Type::Opaque) {
return set_type;
}
if (!current->Arg(i).IsImmediate()) {
queue.push_back(current->Arg(i).Inst());
}
}
}
return IR::Type::Opaque;
}
} // Anonymous namespace
void SsaRewritePass(IR::Program& program) {
Pass pass;
const auto end{program.post_order_blocks.rend()};
for (auto block = program.post_order_blocks.rbegin(); block != end; ++block) {
VisitBlock(pass, *block);
}
for (auto block = program.post_order_blocks.rbegin(); block != end; ++block) {
for (IR::Inst& inst : (*block)->Instructions()) {
if (inst.GetOpcode() == IR::Opcode::Phi) {
if (inst.Type() == IR::Type::Opaque) {
inst.SetFlags(GetConcreteType(&inst));
}
inst.OrderPhiArgs();
}
}
}
}
} // namespace Shader::Optimization