In a few places, the data to be set as the IV is already within an array.
We shouldn't require this data to be heap-allocated if it doesn't need
to be. This allows certain callers to reduce heap churn.
* ipc: Allow all trivially copyable objects to be passed directly into WriteBuffer
With the support of C++20, we can use concepts to deduce if a type is an STL container or not.
* More agressive concept for stl containers
* Add -fconcepts
* Move to common namespace
* Add Common::IsBaseOf
Makes the interface future-proofed for supporting other platforms in the event we ever support platforms with differing pointer sizes. This way, we have a type in place that is always guaranteed to be able to represent a pointer exactly.
Not using the return value of these functions are undeniably the source
of a bug. This way we allow compilers to loudly make any future misuses
evident.
src/core/network/network.cpp:112:28: error: use of undeclared identifier 'SHUT_RD'
constexpr int SD_RECEIVE = SHUT_RD;
^
src/core/network/network.cpp:113:25: error: use of undeclared identifier 'SHUT_WR'
constexpr int SD_SEND = SHUT_WR;
^
src/core/network/network.cpp:114:25: error: use of undeclared identifier 'SHUT_RDWR'
constexpr int SD_BOTH = SHUT_RDWR;
^
src/core/network/network.cpp:120:37: error: unknown type name 'in_addr'; did you mean 'in_addr_t'?
constexpr IPv4Address TranslateIPv4(in_addr addr) {
^~~~~~~
in_addr_t
/usr/include/netdb.h:66:20: note: 'in_addr_t' declared here
typedef __uint32_t in_addr_t;
^
src/core/network/network.cpp:121:27: error: member reference base type 'in_addr_t' (aka 'unsigned int') is not a structure or union
const u32 bytes = addr.s_addr;
~~~~^~~~~~~
src/core/network/network.cpp:121:15: error: variables defined in a constexpr function must be initialized
const u32 bytes = addr.s_addr;
^
src/core/network/network.cpp:126:10: error: incomplete result type 'sockaddr' in function definition
sockaddr TranslateFromSockAddrIn(SockAddrIn input) {
^
/usr/include/netdb.h:142:9: note: forward declaration of 'sockaddr'
struct sockaddr *ai_addr; /* binary address */
^
src/core/network/network.cpp:127:5: error: unknown type name 'sockaddr_in'; did you mean 'sockaddr'?
sockaddr_in result;
^~~~~~~~~~~
sockaddr
/usr/include/netdb.h:142:9: note: 'sockaddr' declared here
struct sockaddr *ai_addr; /* binary address */
^
src/core/network/network.cpp:127:17: error: variable has incomplete type 'sockaddr'
sockaddr_in result;
^
/usr/include/netdb.h:142:9: note: forward declaration of 'sockaddr'
struct sockaddr *ai_addr; /* binary address */
^
src/core/network/network.cpp:131:29: error: use of undeclared identifier 'AF_INET'
result.sin_family = AF_INET;
^
src/core/network/network.cpp:135:29: error: use of undeclared identifier 'AF_INET'
result.sin_family = AF_INET;
^
src/core/network/network.cpp:139:23: error: use of undeclared identifier 'htons'
result.sin_port = htons(input.portno);
^
src/core/network/network.cpp:143:14: error: variable has incomplete type 'sockaddr'
sockaddr addr;
^
/usr/include/netdb.h:142:9: note: forward declaration of 'sockaddr'
struct sockaddr *ai_addr; /* binary address */
^
src/core/network/network.cpp:156:1: error: unknown type name 'linger'
linger MakeLinger(bool enable, u32 linger_value) {
^
src/core/network/network.cpp:157:5: error: unknown type name 'linger'
linger value;
^
src/core/network/network.cpp:185:16: error: use of undeclared identifier 'AF_INET'
return AF_INET;
^
src/core/network/network.cpp:195:16: error: use of undeclared identifier 'SOCK_STREAM'
return SOCK_STREAM;
^
src/core/network/network.cpp:197:16: error: use of undeclared identifier 'SOCK_DGRAM'
return SOCK_DGRAM;
^
src/core/network/network.cpp:207:16: error: use of undeclared identifier 'IPPROTO_TCP'
return IPPROTO_TCP;
^
fatal error: too many errors emitted, stopping now [-ferror-limit=]
This commit adds a network abstraction designed to implement bsd:s but
at the same time work as a generic abstraction to implement any
networking code we have to use from core.
This is implemented on top of BSD sockets on Unix systems and winsock on
Windows. The code is designed around winsocks having compatibility
definitions to support both BSD and Windows sockets.