Merge pull request #3278 from ReinUsesLisp/vk-memory-manager

renderer_vulkan: Buffer cache, stream buffer and memory manager changes
This commit is contained in:
bunnei 2020-01-06 17:03:04 -05:00 committed by GitHub
commit ee9b4a7f9a
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
6 changed files with 426 additions and 320 deletions

View file

@ -2,124 +2,145 @@
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include <cstring>
#include <memory>
#include <optional>
#include <tuple>
#include "common/alignment.h"
#include "common/assert.h"
#include "core/memory.h"
#include "video_core/memory_manager.h"
#include "common/bit_util.h"
#include "core/core.h"
#include "video_core/renderer_vulkan/declarations.h"
#include "video_core/renderer_vulkan/vk_buffer_cache.h"
#include "video_core/renderer_vulkan/vk_device.h"
#include "video_core/renderer_vulkan/vk_scheduler.h"
#include "video_core/renderer_vulkan/vk_stream_buffer.h"
namespace Vulkan {
CachedBufferEntry::CachedBufferEntry(VAddr cpu_addr, std::size_t size, u64 offset,
std::size_t alignment, u8* host_ptr)
: RasterizerCacheObject{host_ptr}, cpu_addr{cpu_addr}, size{size}, offset{offset},
alignment{alignment} {}
namespace {
VKBufferCache::VKBufferCache(Tegra::MemoryManager& tegra_memory_manager,
Memory::Memory& cpu_memory_,
VideoCore::RasterizerInterface& rasterizer, const VKDevice& device,
VKMemoryManager& memory_manager, VKScheduler& scheduler, u64 size)
: RasterizerCache{rasterizer}, tegra_memory_manager{tegra_memory_manager}, cpu_memory{
cpu_memory_} {
const auto usage = vk::BufferUsageFlagBits::eVertexBuffer |
vk::BufferUsageFlagBits::eIndexBuffer |
vk::BufferUsageFlagBits::eUniformBuffer;
const auto access = vk::AccessFlagBits::eVertexAttributeRead | vk::AccessFlagBits::eIndexRead |
vk::AccessFlagBits::eUniformRead;
stream_buffer =
std::make_unique<VKStreamBuffer>(device, memory_manager, scheduler, size, usage, access,
vk::PipelineStageFlagBits::eAllCommands);
buffer_handle = stream_buffer->GetBuffer();
const auto BufferUsage =
vk::BufferUsageFlagBits::eVertexBuffer | vk::BufferUsageFlagBits::eIndexBuffer |
vk::BufferUsageFlagBits::eUniformBuffer | vk::BufferUsageFlagBits::eStorageBuffer;
const auto UploadPipelineStage =
vk::PipelineStageFlagBits::eTransfer | vk::PipelineStageFlagBits::eVertexInput |
vk::PipelineStageFlagBits::eVertexShader | vk::PipelineStageFlagBits::eFragmentShader |
vk::PipelineStageFlagBits::eComputeShader;
const auto UploadAccessBarriers =
vk::AccessFlagBits::eTransferRead | vk::AccessFlagBits::eShaderRead |
vk::AccessFlagBits::eUniformRead | vk::AccessFlagBits::eVertexAttributeRead |
vk::AccessFlagBits::eIndexRead;
auto CreateStreamBuffer(const VKDevice& device, VKScheduler& scheduler) {
return std::make_unique<VKStreamBuffer>(device, scheduler, BufferUsage);
}
} // Anonymous namespace
CachedBufferBlock::CachedBufferBlock(const VKDevice& device, VKMemoryManager& memory_manager,
CacheAddr cache_addr, std::size_t size)
: VideoCommon::BufferBlock{cache_addr, size} {
const vk::BufferCreateInfo buffer_ci({}, static_cast<vk::DeviceSize>(size),
BufferUsage | vk::BufferUsageFlagBits::eTransferSrc |
vk::BufferUsageFlagBits::eTransferDst,
vk::SharingMode::eExclusive, 0, nullptr);
const auto& dld{device.GetDispatchLoader()};
const auto dev{device.GetLogical()};
buffer.handle = dev.createBufferUnique(buffer_ci, nullptr, dld);
buffer.commit = memory_manager.Commit(*buffer.handle, false);
}
CachedBufferBlock::~CachedBufferBlock() = default;
VKBufferCache::VKBufferCache(VideoCore::RasterizerInterface& rasterizer, Core::System& system,
const VKDevice& device, VKMemoryManager& memory_manager,
VKScheduler& scheduler, VKStagingBufferPool& staging_pool)
: VideoCommon::BufferCache<Buffer, vk::Buffer, VKStreamBuffer>{rasterizer, system,
CreateStreamBuffer(device,
scheduler)},
device{device}, memory_manager{memory_manager}, scheduler{scheduler}, staging_pool{
staging_pool} {}
VKBufferCache::~VKBufferCache() = default;
u64 VKBufferCache::UploadMemory(GPUVAddr gpu_addr, std::size_t size, u64 alignment, bool cache) {
const auto cpu_addr{tegra_memory_manager.GpuToCpuAddress(gpu_addr)};
ASSERT_MSG(cpu_addr, "Invalid GPU address");
// Cache management is a big overhead, so only cache entries with a given size.
// TODO: Figure out which size is the best for given games.
cache &= size >= 2048;
u8* const host_ptr{cpu_memory.GetPointer(*cpu_addr)};
if (cache) {
const auto entry = TryGet(host_ptr);
if (entry) {
if (entry->GetSize() >= size && entry->GetAlignment() == alignment) {
return entry->GetOffset();
}
Unregister(entry);
}
}
AlignBuffer(alignment);
const u64 uploaded_offset = buffer_offset;
if (host_ptr == nullptr) {
return uploaded_offset;
}
std::memcpy(buffer_ptr, host_ptr, size);
buffer_ptr += size;
buffer_offset += size;
if (cache) {
auto entry = std::make_shared<CachedBufferEntry>(*cpu_addr, size, uploaded_offset,
alignment, host_ptr);
Register(entry);
}
return uploaded_offset;
Buffer VKBufferCache::CreateBlock(CacheAddr cache_addr, std::size_t size) {
return std::make_shared<CachedBufferBlock>(device, memory_manager, cache_addr, size);
}
u64 VKBufferCache::UploadHostMemory(const u8* raw_pointer, std::size_t size, u64 alignment) {
AlignBuffer(alignment);
std::memcpy(buffer_ptr, raw_pointer, size);
const u64 uploaded_offset = buffer_offset;
buffer_ptr += size;
buffer_offset += size;
return uploaded_offset;
const vk::Buffer* VKBufferCache::ToHandle(const Buffer& buffer) {
return buffer->GetHandle();
}
std::tuple<u8*, u64> VKBufferCache::ReserveMemory(std::size_t size, u64 alignment) {
AlignBuffer(alignment);
u8* const uploaded_ptr = buffer_ptr;
const u64 uploaded_offset = buffer_offset;
buffer_ptr += size;
buffer_offset += size;
return {uploaded_ptr, uploaded_offset};
const vk::Buffer* VKBufferCache::GetEmptyBuffer(std::size_t size) {
size = std::max(size, std::size_t(4));
const auto& empty = staging_pool.GetUnusedBuffer(size, false);
scheduler.RequestOutsideRenderPassOperationContext();
scheduler.Record([size, buffer = *empty.handle](vk::CommandBuffer cmdbuf, auto& dld) {
cmdbuf.fillBuffer(buffer, 0, size, 0, dld);
});
return &*empty.handle;
}
void VKBufferCache::Reserve(std::size_t max_size) {
bool invalidate;
std::tie(buffer_ptr, buffer_offset_base, invalidate) = stream_buffer->Reserve(max_size);
buffer_offset = buffer_offset_base;
void VKBufferCache::UploadBlockData(const Buffer& buffer, std::size_t offset, std::size_t size,
const u8* data) {
const auto& staging = staging_pool.GetUnusedBuffer(size, true);
std::memcpy(staging.commit->Map(size), data, size);
if (invalidate) {
InvalidateAll();
}
scheduler.RequestOutsideRenderPassOperationContext();
scheduler.Record([staging = *staging.handle, buffer = *buffer->GetHandle(), offset,
size](auto cmdbuf, auto& dld) {
cmdbuf.copyBuffer(staging, buffer, {{0, offset, size}}, dld);
cmdbuf.pipelineBarrier(
vk::PipelineStageFlagBits::eTransfer, UploadPipelineStage, {}, {},
{vk::BufferMemoryBarrier(vk::AccessFlagBits::eTransferWrite, UploadAccessBarriers,
VK_QUEUE_FAMILY_IGNORED, VK_QUEUE_FAMILY_IGNORED, buffer,
offset, size)},
{}, dld);
});
}
void VKBufferCache::Send() {
stream_buffer->Send(buffer_offset - buffer_offset_base);
void VKBufferCache::DownloadBlockData(const Buffer& buffer, std::size_t offset, std::size_t size,
u8* data) {
const auto& staging = staging_pool.GetUnusedBuffer(size, true);
scheduler.RequestOutsideRenderPassOperationContext();
scheduler.Record([staging = *staging.handle, buffer = *buffer->GetHandle(), offset,
size](auto cmdbuf, auto& dld) {
cmdbuf.pipelineBarrier(
vk::PipelineStageFlagBits::eVertexShader | vk::PipelineStageFlagBits::eFragmentShader |
vk::PipelineStageFlagBits::eComputeShader,
vk::PipelineStageFlagBits::eTransfer, {}, {},
{vk::BufferMemoryBarrier(vk::AccessFlagBits::eShaderWrite,
vk::AccessFlagBits::eTransferRead, VK_QUEUE_FAMILY_IGNORED,
VK_QUEUE_FAMILY_IGNORED, buffer, offset, size)},
{}, dld);
cmdbuf.copyBuffer(buffer, staging, {{offset, 0, size}}, dld);
});
scheduler.Finish();
std::memcpy(data, staging.commit->Map(size), size);
}
void VKBufferCache::AlignBuffer(std::size_t alignment) {
// Align the offset, not the mapped pointer
const u64 offset_aligned = Common::AlignUp(buffer_offset, alignment);
buffer_ptr += offset_aligned - buffer_offset;
buffer_offset = offset_aligned;
void VKBufferCache::CopyBlock(const Buffer& src, const Buffer& dst, std::size_t src_offset,
std::size_t dst_offset, std::size_t size) {
scheduler.RequestOutsideRenderPassOperationContext();
scheduler.Record([src_buffer = *src->GetHandle(), dst_buffer = *dst->GetHandle(), src_offset,
dst_offset, size](auto cmdbuf, auto& dld) {
cmdbuf.copyBuffer(src_buffer, dst_buffer, {{src_offset, dst_offset, size}}, dld);
cmdbuf.pipelineBarrier(
vk::PipelineStageFlagBits::eTransfer, UploadPipelineStage, {}, {},
{vk::BufferMemoryBarrier(vk::AccessFlagBits::eTransferRead,
vk::AccessFlagBits::eShaderWrite, VK_QUEUE_FAMILY_IGNORED,
VK_QUEUE_FAMILY_IGNORED, src_buffer, src_offset, size),
vk::BufferMemoryBarrier(vk::AccessFlagBits::eTransferWrite, UploadAccessBarriers,
VK_QUEUE_FAMILY_IGNORED, VK_QUEUE_FAMILY_IGNORED, dst_buffer,
dst_offset, size)},
{}, dld);
});
}
} // namespace Vulkan

View file

@ -5,105 +5,74 @@
#pragma once
#include <memory>
#include <tuple>
#include <unordered_map>
#include <vector>
#include "common/common_types.h"
#include "video_core/gpu.h"
#include "video_core/buffer_cache/buffer_cache.h"
#include "video_core/rasterizer_cache.h"
#include "video_core/renderer_vulkan/declarations.h"
#include "video_core/renderer_vulkan/vk_scheduler.h"
#include "video_core/renderer_vulkan/vk_memory_manager.h"
#include "video_core/renderer_vulkan/vk_resource_manager.h"
#include "video_core/renderer_vulkan/vk_staging_buffer_pool.h"
#include "video_core/renderer_vulkan/vk_stream_buffer.h"
namespace Memory {
class Memory;
}
namespace Tegra {
class MemoryManager;
namespace Core {
class System;
}
namespace Vulkan {
class VKDevice;
class VKFence;
class VKMemoryManager;
class VKStreamBuffer;
class VKScheduler;
class CachedBufferEntry final : public RasterizerCacheObject {
class CachedBufferBlock final : public VideoCommon::BufferBlock {
public:
explicit CachedBufferEntry(VAddr cpu_addr, std::size_t size, u64 offset, std::size_t alignment,
u8* host_ptr);
explicit CachedBufferBlock(const VKDevice& device, VKMemoryManager& memory_manager,
CacheAddr cache_addr, std::size_t size);
~CachedBufferBlock();
VAddr GetCpuAddr() const override {
return cpu_addr;
}
std::size_t GetSizeInBytes() const override {
return size;
}
std::size_t GetSize() const {
return size;
}
u64 GetOffset() const {
return offset;
}
std::size_t GetAlignment() const {
return alignment;
const vk::Buffer* GetHandle() const {
return &*buffer.handle;
}
private:
VAddr cpu_addr{};
std::size_t size{};
u64 offset{};
std::size_t alignment{};
VKBuffer buffer;
};
class VKBufferCache final : public RasterizerCache<std::shared_ptr<CachedBufferEntry>> {
using Buffer = std::shared_ptr<CachedBufferBlock>;
class VKBufferCache final : public VideoCommon::BufferCache<Buffer, vk::Buffer, VKStreamBuffer> {
public:
explicit VKBufferCache(Tegra::MemoryManager& tegra_memory_manager, Memory::Memory& cpu_memory_,
VideoCore::RasterizerInterface& rasterizer, const VKDevice& device,
VKMemoryManager& memory_manager, VKScheduler& scheduler, u64 size);
explicit VKBufferCache(VideoCore::RasterizerInterface& rasterizer, Core::System& system,
const VKDevice& device, VKMemoryManager& memory_manager,
VKScheduler& scheduler, VKStagingBufferPool& staging_pool);
~VKBufferCache();
/// Uploads data from a guest GPU address. Returns host's buffer offset where it's been
/// allocated.
u64 UploadMemory(GPUVAddr gpu_addr, std::size_t size, u64 alignment = 4, bool cache = true);
/// Uploads from a host memory. Returns host's buffer offset where it's been allocated.
u64 UploadHostMemory(const u8* raw_pointer, std::size_t size, u64 alignment = 4);
/// Reserves memory to be used by host's CPU. Returns mapped address and offset.
std::tuple<u8*, u64> ReserveMemory(std::size_t size, u64 alignment = 4);
/// Reserves a region of memory to be used in subsequent upload/reserve operations.
void Reserve(std::size_t max_size);
/// Ensures that the set data is sent to the device.
void Send();
/// Returns the buffer cache handle.
vk::Buffer GetBuffer() const {
return buffer_handle;
}
const vk::Buffer* GetEmptyBuffer(std::size_t size) override;
protected:
// We do not have to flush this cache as things in it are never modified by us.
void FlushObjectInner(const std::shared_ptr<CachedBufferEntry>& object) override {}
void WriteBarrier() override {}
Buffer CreateBlock(CacheAddr cache_addr, std::size_t size) override;
const vk::Buffer* ToHandle(const Buffer& buffer) override;
void UploadBlockData(const Buffer& buffer, std::size_t offset, std::size_t size,
const u8* data) override;
void DownloadBlockData(const Buffer& buffer, std::size_t offset, std::size_t size,
u8* data) override;
void CopyBlock(const Buffer& src, const Buffer& dst, std::size_t src_offset,
std::size_t dst_offset, std::size_t size) override;
private:
void AlignBuffer(std::size_t alignment);
Tegra::MemoryManager& tegra_memory_manager;
Memory::Memory& cpu_memory;
std::unique_ptr<VKStreamBuffer> stream_buffer;
vk::Buffer buffer_handle;
u8* buffer_ptr = nullptr;
u64 buffer_offset = 0;
u64 buffer_offset_base = 0;
const VKDevice& device;
VKMemoryManager& memory_manager;
VKScheduler& scheduler;
VKStagingBufferPool& staging_pool;
};
} // namespace Vulkan

View file

@ -6,6 +6,7 @@
#include <optional>
#include <tuple>
#include <vector>
#include "common/alignment.h"
#include "common/assert.h"
#include "common/common_types.h"
@ -16,34 +17,32 @@
namespace Vulkan {
// TODO(Rodrigo): Fine tune this number
constexpr u64 ALLOC_CHUNK_SIZE = 64 * 1024 * 1024;
namespace {
u64 GetAllocationChunkSize(u64 required_size) {
static constexpr u64 sizes[] = {16ULL << 20, 32ULL << 20, 64ULL << 20, 128ULL << 20};
auto it = std::lower_bound(std::begin(sizes), std::end(sizes), required_size);
return it != std::end(sizes) ? *it : Common::AlignUp(required_size, 256ULL << 20);
}
} // Anonymous namespace
class VKMemoryAllocation final {
public:
explicit VKMemoryAllocation(const VKDevice& device, vk::DeviceMemory memory,
vk::MemoryPropertyFlags properties, u64 alloc_size, u32 type)
: device{device}, memory{memory}, properties{properties}, alloc_size{alloc_size},
shifted_type{ShiftType(type)}, is_mappable{properties &
vk::MemoryPropertyFlagBits::eHostVisible} {
if (is_mappable) {
const auto dev = device.GetLogical();
const auto& dld = device.GetDispatchLoader();
base_address = static_cast<u8*>(dev.mapMemory(memory, 0, alloc_size, {}, dld));
}
}
vk::MemoryPropertyFlags properties, u64 allocation_size, u32 type)
: device{device}, memory{memory}, properties{properties}, allocation_size{allocation_size},
shifted_type{ShiftType(type)} {}
~VKMemoryAllocation() {
const auto dev = device.GetLogical();
const auto& dld = device.GetDispatchLoader();
if (is_mappable)
dev.unmapMemory(memory, dld);
dev.free(memory, nullptr, dld);
}
VKMemoryCommit Commit(vk::DeviceSize commit_size, vk::DeviceSize alignment) {
auto found = TryFindFreeSection(free_iterator, alloc_size, static_cast<u64>(commit_size),
static_cast<u64>(alignment));
auto found = TryFindFreeSection(free_iterator, allocation_size,
static_cast<u64>(commit_size), static_cast<u64>(alignment));
if (!found) {
found = TryFindFreeSection(0, free_iterator, static_cast<u64>(commit_size),
static_cast<u64>(alignment));
@ -52,8 +51,7 @@ public:
return nullptr;
}
}
u8* address = is_mappable ? base_address + *found : nullptr;
auto commit = std::make_unique<VKMemoryCommitImpl>(this, memory, address, *found,
auto commit = std::make_unique<VKMemoryCommitImpl>(device, this, memory, *found,
*found + commit_size);
commits.push_back(commit.get());
@ -65,12 +63,10 @@ public:
void Free(const VKMemoryCommitImpl* commit) {
ASSERT(commit);
const auto it =
std::find_if(commits.begin(), commits.end(),
[&](const auto& stored_commit) { return stored_commit == commit; });
const auto it = std::find(std::begin(commits), std::end(commits), commit);
if (it == commits.end()) {
LOG_CRITICAL(Render_Vulkan, "Freeing unallocated commit!");
UNREACHABLE();
UNREACHABLE_MSG("Freeing unallocated commit!");
return;
}
commits.erase(it);
@ -88,11 +84,11 @@ private:
}
/// A memory allocator, it may return a free region between "start" and "end" with the solicited
/// requeriments.
/// requirements.
std::optional<u64> TryFindFreeSection(u64 start, u64 end, u64 size, u64 alignment) const {
u64 iterator = start;
while (iterator + size < end) {
const u64 try_left = Common::AlignUp(iterator, alignment);
u64 iterator = Common::AlignUp(start, alignment);
while (iterator + size <= end) {
const u64 try_left = iterator;
const u64 try_right = try_left + size;
bool overlap = false;
@ -100,7 +96,7 @@ private:
const auto [commit_left, commit_right] = commit->interval;
if (try_left < commit_right && commit_left < try_right) {
// There's an overlap, continue the search where the overlapping commit ends.
iterator = commit_right;
iterator = Common::AlignUp(commit_right, alignment);
overlap = true;
break;
}
@ -110,6 +106,7 @@ private:
return try_left;
}
}
// No free regions where found, return an empty optional.
return std::nullopt;
}
@ -117,12 +114,8 @@ private:
const VKDevice& device; ///< Vulkan device.
const vk::DeviceMemory memory; ///< Vulkan memory allocation handler.
const vk::MemoryPropertyFlags properties; ///< Vulkan properties.
const u64 alloc_size; ///< Size of this allocation.
const u64 allocation_size; ///< Size of this allocation.
const u32 shifted_type; ///< Stored Vulkan type of this allocation, shifted.
const bool is_mappable; ///< Whether the allocation is mappable.
/// Base address of the mapped pointer.
u8* base_address{};
/// Hints where the next free region is likely going to be.
u64 free_iterator{};
@ -132,13 +125,15 @@ private:
};
VKMemoryManager::VKMemoryManager(const VKDevice& device)
: device{device}, props{device.GetPhysical().getMemoryProperties(device.GetDispatchLoader())},
is_memory_unified{GetMemoryUnified(props)} {}
: device{device}, properties{device.GetPhysical().getMemoryProperties(
device.GetDispatchLoader())},
is_memory_unified{GetMemoryUnified(properties)} {}
VKMemoryManager::~VKMemoryManager() = default;
VKMemoryCommit VKMemoryManager::Commit(const vk::MemoryRequirements& reqs, bool host_visible) {
ASSERT(reqs.size < ALLOC_CHUNK_SIZE);
VKMemoryCommit VKMemoryManager::Commit(const vk::MemoryRequirements& requirements,
bool host_visible) {
const u64 chunk_size = GetAllocationChunkSize(requirements.size);
// When a host visible commit is asked, search for host visible and coherent, otherwise search
// for a fast device local type.
@ -147,32 +142,21 @@ VKMemoryCommit VKMemoryManager::Commit(const vk::MemoryRequirements& reqs, bool
? vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent
: vk::MemoryPropertyFlagBits::eDeviceLocal;
const auto TryCommit = [&]() -> VKMemoryCommit {
for (auto& alloc : allocs) {
if (!alloc->IsCompatible(wanted_properties, reqs.memoryTypeBits))
continue;
if (auto commit = alloc->Commit(reqs.size, reqs.alignment); commit) {
return commit;
}
}
return {};
};
if (auto commit = TryCommit(); commit) {
if (auto commit = TryAllocCommit(requirements, wanted_properties)) {
return commit;
}
// Commit has failed, allocate more memory.
if (!AllocMemory(wanted_properties, reqs.memoryTypeBits, ALLOC_CHUNK_SIZE)) {
// TODO(Rodrigo): Try to use host memory.
LOG_CRITICAL(Render_Vulkan, "Ran out of memory!");
UNREACHABLE();
if (!AllocMemory(wanted_properties, requirements.memoryTypeBits, chunk_size)) {
// TODO(Rodrigo): Handle these situations in some way like flushing to guest memory.
// Allocation has failed, panic.
UNREACHABLE_MSG("Ran out of VRAM!");
return {};
}
// Commit again, this time it won't fail since there's a fresh allocation above. If it does,
// there's a bug.
auto commit = TryCommit();
auto commit = TryAllocCommit(requirements, wanted_properties);
ASSERT(commit);
return commit;
}
@ -180,8 +164,7 @@ VKMemoryCommit VKMemoryManager::Commit(const vk::MemoryRequirements& reqs, bool
VKMemoryCommit VKMemoryManager::Commit(vk::Buffer buffer, bool host_visible) {
const auto dev = device.GetLogical();
const auto& dld = device.GetDispatchLoader();
const auto requeriments = dev.getBufferMemoryRequirements(buffer, dld);
auto commit = Commit(requeriments, host_visible);
auto commit = Commit(dev.getBufferMemoryRequirements(buffer, dld), host_visible);
dev.bindBufferMemory(buffer, commit->GetMemory(), commit->GetOffset(), dld);
return commit;
}
@ -189,25 +172,23 @@ VKMemoryCommit VKMemoryManager::Commit(vk::Buffer buffer, bool host_visible) {
VKMemoryCommit VKMemoryManager::Commit(vk::Image image, bool host_visible) {
const auto dev = device.GetLogical();
const auto& dld = device.GetDispatchLoader();
const auto requeriments = dev.getImageMemoryRequirements(image, dld);
auto commit = Commit(requeriments, host_visible);
auto commit = Commit(dev.getImageMemoryRequirements(image, dld), host_visible);
dev.bindImageMemory(image, commit->GetMemory(), commit->GetOffset(), dld);
return commit;
}
bool VKMemoryManager::AllocMemory(vk::MemoryPropertyFlags wanted_properties, u32 type_mask,
u64 size) {
const u32 type = [&]() {
for (u32 type_index = 0; type_index < props.memoryTypeCount; ++type_index) {
const auto flags = props.memoryTypes[type_index].propertyFlags;
const u32 type = [&] {
for (u32 type_index = 0; type_index < properties.memoryTypeCount; ++type_index) {
const auto flags = properties.memoryTypes[type_index].propertyFlags;
if ((type_mask & (1U << type_index)) && (flags & wanted_properties)) {
// The type matches in type and in the wanted properties.
return type_index;
}
}
LOG_CRITICAL(Render_Vulkan, "Couldn't find a compatible memory type!");
UNREACHABLE();
return 0u;
UNREACHABLE_MSG("Couldn't find a compatible memory type!");
return 0U;
}();
const auto dev = device.GetLogical();
@ -216,19 +197,33 @@ bool VKMemoryManager::AllocMemory(vk::MemoryPropertyFlags wanted_properties, u32
// Try to allocate found type.
const vk::MemoryAllocateInfo memory_ai(size, type);
vk::DeviceMemory memory;
if (const vk::Result res = dev.allocateMemory(&memory_ai, nullptr, &memory, dld);
if (const auto res = dev.allocateMemory(&memory_ai, nullptr, &memory, dld);
res != vk::Result::eSuccess) {
LOG_CRITICAL(Render_Vulkan, "Device allocation failed with code {}!", vk::to_string(res));
return false;
}
allocs.push_back(
allocations.push_back(
std::make_unique<VKMemoryAllocation>(device, memory, wanted_properties, size, type));
return true;
}
/*static*/ bool VKMemoryManager::GetMemoryUnified(const vk::PhysicalDeviceMemoryProperties& props) {
for (u32 heap_index = 0; heap_index < props.memoryHeapCount; ++heap_index) {
if (!(props.memoryHeaps[heap_index].flags & vk::MemoryHeapFlagBits::eDeviceLocal)) {
VKMemoryCommit VKMemoryManager::TryAllocCommit(const vk::MemoryRequirements& requirements,
vk::MemoryPropertyFlags wanted_properties) {
for (auto& allocation : allocations) {
if (!allocation->IsCompatible(wanted_properties, requirements.memoryTypeBits)) {
continue;
}
if (auto commit = allocation->Commit(requirements.size, requirements.alignment)) {
return commit;
}
}
return {};
}
/*static*/ bool VKMemoryManager::GetMemoryUnified(
const vk::PhysicalDeviceMemoryProperties& properties) {
for (u32 heap_index = 0; heap_index < properties.memoryHeapCount; ++heap_index) {
if (!(properties.memoryHeaps[heap_index].flags & vk::MemoryHeapFlagBits::eDeviceLocal)) {
// Memory is considered unified when heaps are device local only.
return false;
}
@ -236,17 +231,28 @@ bool VKMemoryManager::AllocMemory(vk::MemoryPropertyFlags wanted_properties, u32
return true;
}
VKMemoryCommitImpl::VKMemoryCommitImpl(VKMemoryAllocation* allocation, vk::DeviceMemory memory,
u8* data, u64 begin, u64 end)
: interval(std::make_pair(begin, end)), memory{memory}, allocation{allocation}, data{data} {}
VKMemoryCommitImpl::VKMemoryCommitImpl(const VKDevice& device, VKMemoryAllocation* allocation,
vk::DeviceMemory memory, u64 begin, u64 end)
: device{device}, interval{begin, end}, memory{memory}, allocation{allocation} {}
VKMemoryCommitImpl::~VKMemoryCommitImpl() {
allocation->Free(this);
}
u8* VKMemoryCommitImpl::GetData() const {
ASSERT_MSG(data != nullptr, "Trying to access an unmapped commit.");
return data;
MemoryMap VKMemoryCommitImpl::Map(u64 size, u64 offset_) const {
const auto dev = device.GetLogical();
const auto address = reinterpret_cast<u8*>(
dev.mapMemory(memory, interval.first + offset_, size, {}, device.GetDispatchLoader()));
return MemoryMap{this, address};
}
void VKMemoryCommitImpl::Unmap() const {
const auto dev = device.GetLogical();
dev.unmapMemory(memory, device.GetDispatchLoader());
}
MemoryMap VKMemoryCommitImpl::Map() const {
return Map(interval.second - interval.first);
}
} // namespace Vulkan

View file

@ -12,6 +12,7 @@
namespace Vulkan {
class MemoryMap;
class VKDevice;
class VKMemoryAllocation;
class VKMemoryCommitImpl;
@ -21,13 +22,14 @@ using VKMemoryCommit = std::unique_ptr<VKMemoryCommitImpl>;
class VKMemoryManager final {
public:
explicit VKMemoryManager(const VKDevice& device);
VKMemoryManager(const VKMemoryManager&) = delete;
~VKMemoryManager();
/**
* Commits a memory with the specified requeriments.
* @param reqs Requeriments returned from a Vulkan call.
* @param requirements Requirements returned from a Vulkan call.
* @param host_visible Signals the allocator that it *must* use host visible and coherent
* memory. When passing false, it will try to allocate device local memory.
* memory. When passing false, it will try to allocate device local memory.
* @returns A memory commit.
*/
VKMemoryCommit Commit(const vk::MemoryRequirements& reqs, bool host_visible);
@ -47,25 +49,35 @@ private:
/// Allocates a chunk of memory.
bool AllocMemory(vk::MemoryPropertyFlags wanted_properties, u32 type_mask, u64 size);
/// Returns true if the device uses an unified memory model.
static bool GetMemoryUnified(const vk::PhysicalDeviceMemoryProperties& props);
/// Tries to allocate a memory commit.
VKMemoryCommit TryAllocCommit(const vk::MemoryRequirements& requirements,
vk::MemoryPropertyFlags wanted_properties);
const VKDevice& device; ///< Device handler.
const vk::PhysicalDeviceMemoryProperties props; ///< Physical device properties.
const bool is_memory_unified; ///< True if memory model is unified.
std::vector<std::unique_ptr<VKMemoryAllocation>> allocs; ///< Current allocations.
/// Returns true if the device uses an unified memory model.
static bool GetMemoryUnified(const vk::PhysicalDeviceMemoryProperties& properties);
const VKDevice& device; ///< Device handler.
const vk::PhysicalDeviceMemoryProperties properties; ///< Physical device properties.
const bool is_memory_unified; ///< True if memory model is unified.
std::vector<std::unique_ptr<VKMemoryAllocation>> allocations; ///< Current allocations.
};
class VKMemoryCommitImpl final {
friend VKMemoryAllocation;
friend MemoryMap;
public:
explicit VKMemoryCommitImpl(VKMemoryAllocation* allocation, vk::DeviceMemory memory, u8* data,
u64 begin, u64 end);
explicit VKMemoryCommitImpl(const VKDevice& device, VKMemoryAllocation* allocation,
vk::DeviceMemory memory, u64 begin, u64 end);
~VKMemoryCommitImpl();
/// Returns the writeable memory map. The commit has to be mappable.
u8* GetData() const;
/// Maps a memory region and returns a pointer to it.
/// It's illegal to have more than one memory map at the same time.
MemoryMap Map(u64 size, u64 offset = 0) const;
/// Maps the whole commit and returns a pointer to it.
/// It's illegal to have more than one memory map at the same time.
MemoryMap Map() const;
/// Returns the Vulkan memory handler.
vk::DeviceMemory GetMemory() const {
@ -78,10 +90,46 @@ public:
}
private:
/// Unmaps memory.
void Unmap() const;
const VKDevice& device; ///< Vulkan device.
std::pair<u64, u64> interval{}; ///< Interval where the commit exists.
vk::DeviceMemory memory; ///< Vulkan device memory handler.
VKMemoryAllocation* allocation{}; ///< Pointer to the large memory allocation.
u8* data{}; ///< Pointer to the host mapped memory, it has the commit offset included.
};
/// Holds ownership of a memory map.
class MemoryMap final {
public:
explicit MemoryMap(const VKMemoryCommitImpl* commit, u8* address)
: commit{commit}, address{address} {}
~MemoryMap() {
if (commit) {
commit->Unmap();
}
}
/// Prematurely releases the memory map.
void Release() {
commit->Unmap();
commit = nullptr;
}
/// Returns the address of the memory map.
u8* GetAddress() const {
return address;
}
/// Returns the address of the memory map;
operator u8*() const {
return address;
}
private:
const VKMemoryCommitImpl* commit{}; ///< Mapped memory commit.
u8* address{}; ///< Address to the mapped memory.
};
} // namespace Vulkan

View file

@ -3,86 +3,144 @@
// Refer to the license.txt file included.
#include <algorithm>
#include <memory>
#include <optional>
#include <tuple>
#include <vector>
#include "common/alignment.h"
#include "common/assert.h"
#include "video_core/renderer_vulkan/declarations.h"
#include "video_core/renderer_vulkan/vk_device.h"
#include "video_core/renderer_vulkan/vk_memory_manager.h"
#include "video_core/renderer_vulkan/vk_resource_manager.h"
#include "video_core/renderer_vulkan/vk_scheduler.h"
#include "video_core/renderer_vulkan/vk_stream_buffer.h"
namespace Vulkan {
namespace {
constexpr u64 WATCHES_INITIAL_RESERVE = 0x4000;
constexpr u64 WATCHES_RESERVE_CHUNK = 0x1000;
VKStreamBuffer::VKStreamBuffer(const VKDevice& device, VKMemoryManager& memory_manager,
VKScheduler& scheduler, u64 size, vk::BufferUsageFlags usage,
vk::AccessFlags access, vk::PipelineStageFlags pipeline_stage)
: device{device}, scheduler{scheduler}, buffer_size{size}, access{access}, pipeline_stage{
pipeline_stage} {
CreateBuffers(memory_manager, usage);
ReserveWatches(WATCHES_INITIAL_RESERVE);
constexpr u64 STREAM_BUFFER_SIZE = 256 * 1024 * 1024;
std::optional<u32> FindMemoryType(const VKDevice& device, u32 filter,
vk::MemoryPropertyFlags wanted) {
const auto properties = device.GetPhysical().getMemoryProperties(device.GetDispatchLoader());
for (u32 i = 0; i < properties.memoryTypeCount; i++) {
if (!(filter & (1 << i))) {
continue;
}
if ((properties.memoryTypes[i].propertyFlags & wanted) == wanted) {
return i;
}
}
return {};
}
} // Anonymous namespace
VKStreamBuffer::VKStreamBuffer(const VKDevice& device, VKScheduler& scheduler,
vk::BufferUsageFlags usage)
: device{device}, scheduler{scheduler} {
CreateBuffers(usage);
ReserveWatches(current_watches, WATCHES_INITIAL_RESERVE);
ReserveWatches(previous_watches, WATCHES_INITIAL_RESERVE);
}
VKStreamBuffer::~VKStreamBuffer() = default;
std::tuple<u8*, u64, bool> VKStreamBuffer::Reserve(u64 size) {
ASSERT(size <= buffer_size);
std::tuple<u8*, u64, bool> VKStreamBuffer::Map(u64 size, u64 alignment) {
ASSERT(size <= STREAM_BUFFER_SIZE);
mapped_size = size;
if (offset + size > buffer_size) {
// The buffer would overflow, save the amount of used buffers, signal an invalidation and
// reset the state.
invalidation_mark = used_watches;
used_watches = 0;
if (alignment > 0) {
offset = Common::AlignUp(offset, alignment);
}
WaitPendingOperations(offset);
bool invalidated = false;
if (offset + size > STREAM_BUFFER_SIZE) {
// The buffer would overflow, save the amount of used watches and reset the state.
invalidation_mark = current_watch_cursor;
current_watch_cursor = 0;
offset = 0;
}
return {mapped_pointer + offset, offset, invalidation_mark.has_value()};
}
// Swap watches and reset waiting cursors.
std::swap(previous_watches, current_watches);
wait_cursor = 0;
wait_bound = 0;
void VKStreamBuffer::Send(u64 size) {
ASSERT_MSG(size <= mapped_size, "Reserved size is too small");
if (invalidation_mark) {
// TODO(Rodrigo): Find a better way to invalidate than waiting for all watches to finish.
// Ensure that we don't wait for uncommitted fences.
scheduler.Flush();
std::for_each(watches.begin(), watches.begin() + *invalidation_mark,
[&](auto& resource) { resource->Wait(); });
invalidation_mark = std::nullopt;
invalidated = true;
}
if (used_watches + 1 >= watches.size()) {
// Ensure that there are enough watches.
ReserveWatches(WATCHES_RESERVE_CHUNK);
}
// Add a watch for this allocation.
watches[used_watches++]->Watch(scheduler.GetFence());
offset += size;
}
void VKStreamBuffer::CreateBuffers(VKMemoryManager& memory_manager, vk::BufferUsageFlags usage) {
const vk::BufferCreateInfo buffer_ci({}, buffer_size, usage, vk::SharingMode::eExclusive, 0,
nullptr);
const auto dev = device.GetLogical();
const auto& dld = device.GetDispatchLoader();
buffer = dev.createBufferUnique(buffer_ci, nullptr, dld);
commit = memory_manager.Commit(*buffer, true);
mapped_pointer = commit->GetData();
const auto pointer = reinterpret_cast<u8*>(dev.mapMemory(*memory, offset, size, {}, dld));
return {pointer, offset, invalidated};
}
void VKStreamBuffer::ReserveWatches(std::size_t grow_size) {
const std::size_t previous_size = watches.size();
watches.resize(previous_size + grow_size);
std::generate(watches.begin() + previous_size, watches.end(),
[]() { return std::make_unique<VKFenceWatch>(); });
void VKStreamBuffer::Unmap(u64 size) {
ASSERT_MSG(size <= mapped_size, "Reserved size is too small");
const auto dev = device.GetLogical();
dev.unmapMemory(*memory, device.GetDispatchLoader());
offset += size;
if (current_watch_cursor + 1 >= current_watches.size()) {
// Ensure that there are enough watches.
ReserveWatches(current_watches, WATCHES_RESERVE_CHUNK);
}
auto& watch = current_watches[current_watch_cursor++];
watch.upper_bound = offset;
watch.fence.Watch(scheduler.GetFence());
}
void VKStreamBuffer::CreateBuffers(vk::BufferUsageFlags usage) {
const vk::BufferCreateInfo buffer_ci({}, STREAM_BUFFER_SIZE, usage, vk::SharingMode::eExclusive,
0, nullptr);
const auto dev = device.GetLogical();
const auto& dld = device.GetDispatchLoader();
buffer = dev.createBufferUnique(buffer_ci, nullptr, dld);
const auto requirements = dev.getBufferMemoryRequirements(*buffer, dld);
// Prefer device local host visible allocations (this should hit AMD's pinned memory).
auto type = FindMemoryType(device, requirements.memoryTypeBits,
vk::MemoryPropertyFlagBits::eHostVisible |
vk::MemoryPropertyFlagBits::eHostCoherent |
vk::MemoryPropertyFlagBits::eDeviceLocal);
if (!type) {
// Otherwise search for a host visible allocation.
type = FindMemoryType(device, requirements.memoryTypeBits,
vk::MemoryPropertyFlagBits::eHostVisible |
vk::MemoryPropertyFlagBits::eHostCoherent);
ASSERT_MSG(type, "No host visible and coherent memory type found");
}
const vk::MemoryAllocateInfo alloc_ci(requirements.size, *type);
memory = dev.allocateMemoryUnique(alloc_ci, nullptr, dld);
dev.bindBufferMemory(*buffer, *memory, 0, dld);
}
void VKStreamBuffer::ReserveWatches(std::vector<Watch>& watches, std::size_t grow_size) {
watches.resize(watches.size() + grow_size);
}
void VKStreamBuffer::WaitPendingOperations(u64 requested_upper_bound) {
if (!invalidation_mark) {
return;
}
while (requested_upper_bound < wait_bound && wait_cursor < *invalidation_mark) {
auto& watch = previous_watches[wait_cursor];
wait_bound = watch.upper_bound;
watch.fence.Wait();
++wait_cursor;
}
}
} // namespace Vulkan

View file

@ -4,28 +4,24 @@
#pragma once
#include <memory>
#include <optional>
#include <tuple>
#include <vector>
#include "common/common_types.h"
#include "video_core/renderer_vulkan/declarations.h"
#include "video_core/renderer_vulkan/vk_memory_manager.h"
namespace Vulkan {
class VKDevice;
class VKFence;
class VKFenceWatch;
class VKResourceManager;
class VKScheduler;
class VKStreamBuffer {
class VKStreamBuffer final {
public:
explicit VKStreamBuffer(const VKDevice& device, VKMemoryManager& memory_manager,
VKScheduler& scheduler, u64 size, vk::BufferUsageFlags usage,
vk::AccessFlags access, vk::PipelineStageFlags pipeline_stage);
explicit VKStreamBuffer(const VKDevice& device, VKScheduler& scheduler,
vk::BufferUsageFlags usage);
~VKStreamBuffer();
/**
@ -34,39 +30,47 @@ public:
* @returns A tuple in the following order: Raw memory pointer (with offset added), buffer
* offset and a boolean that's true when buffer has been invalidated.
*/
std::tuple<u8*, u64, bool> Reserve(u64 size);
std::tuple<u8*, u64, bool> Map(u64 size, u64 alignment);
/// Ensures that "size" bytes of memory are available to the GPU, potentially recording a copy.
void Send(u64 size);
void Unmap(u64 size);
vk::Buffer GetBuffer() const {
vk::Buffer GetHandle() const {
return *buffer;
}
private:
struct Watch final {
VKFenceWatch fence;
u64 upper_bound{};
};
/// Creates Vulkan buffer handles committing the required the required memory.
void CreateBuffers(VKMemoryManager& memory_manager, vk::BufferUsageFlags usage);
void CreateBuffers(vk::BufferUsageFlags usage);
/// Increases the amount of watches available.
void ReserveWatches(std::size_t grow_size);
void ReserveWatches(std::vector<Watch>& watches, std::size_t grow_size);
void WaitPendingOperations(u64 requested_upper_bound);
const VKDevice& device; ///< Vulkan device manager.
VKScheduler& scheduler; ///< Command scheduler.
const u64 buffer_size; ///< Total size of the stream buffer.
const vk::AccessFlags access; ///< Access usage of this stream buffer.
const vk::PipelineStageFlags pipeline_stage; ///< Pipeline usage of this stream buffer.
UniqueBuffer buffer; ///< Mapped buffer.
VKMemoryCommit commit; ///< Memory commit.
u8* mapped_pointer{}; ///< Pointer to the host visible commit
UniqueBuffer buffer; ///< Mapped buffer.
UniqueDeviceMemory memory; ///< Memory allocation.
u64 offset{}; ///< Buffer iterator.
u64 mapped_size{}; ///< Size reserved for the current copy.
std::vector<std::unique_ptr<VKFenceWatch>> watches; ///< Total watches
std::size_t used_watches{}; ///< Count of watches, reset on invalidation.
std::optional<std::size_t>
invalidation_mark{}; ///< Number of watches used in the current invalidation.
std::vector<Watch> current_watches; ///< Watches recorded in the current iteration.
std::size_t current_watch_cursor{}; ///< Count of watches, reset on invalidation.
std::optional<std::size_t> invalidation_mark; ///< Number of watches used in the previous cycle.
std::vector<Watch> previous_watches; ///< Watches used in the previous iteration.
std::size_t wait_cursor{}; ///< Last watch being waited for completion.
u64 wait_bound{}; ///< Highest offset being watched for completion.
};
} // namespace Vulkan