yuzu/src/core/memory.cpp

705 lines
25 KiB
C++
Raw Normal View History

// Copyright 2015 Citra Emulator Project
2014-12-17 05:38:14 +00:00
// Licensed under GPLv2 or any later version
2014-04-09 00:15:46 +01:00
// Refer to the license.txt file included.
2013-09-19 04:52:51 +01:00
#include <algorithm>
#include <array>
#include <cinttypes>
2015-09-10 04:23:44 +01:00
#include <cstring>
#include <boost/optional.hpp>
#include "common/assert.h"
2015-05-06 08:06:12 +01:00
#include "common/common_types.h"
#include "common/logging/log.h"
#include "common/swap.h"
#include "core/arm/arm_interface.h"
#include "core/core.h"
#include "core/hle/kernel/memory.h"
#include "core/hle/kernel/process.h"
#include "core/hle/lock.h"
#include "core/memory.h"
#include "core/memory_setup.h"
2016-04-16 23:57:57 +01:00
#include "video_core/renderer_base.h"
#include "video_core/video_core.h"
2013-09-19 04:52:51 +01:00
namespace Memory {
static std::array<u8, Memory::VRAM_SIZE> vram;
2016-01-30 18:41:04 +00:00
static PageTable* current_page_table = nullptr;
void SetCurrentPageTable(PageTable* page_table) {
current_page_table = page_table;
if (Core::System::GetInstance().IsPoweredOn()) {
Core::CPU().PageTableChanged();
}
}
PageTable* GetCurrentPageTable() {
return current_page_table;
}
static void MapPages(PageTable& page_table, VAddr base, u64 size, u8* memory, PageType type) {
LOG_DEBUG(HW_Memory, "Mapping %p onto %016" PRIX64 "-%016" PRIX64, memory, base * PAGE_SIZE,
(base + size) * PAGE_SIZE);
RasterizerFlushVirtualRegion(base << PAGE_BITS, size * PAGE_SIZE,
FlushMode::FlushAndInvalidate);
VAddr end = base + size;
while (base != end) {
ASSERT_MSG(base < PAGE_TABLE_NUM_ENTRIES, "out of range mapping at %016" PRIX64, base);
page_table.attributes[base] = type;
page_table.pointers[base] = memory;
base += 1;
2015-07-10 02:47:27 +01:00
if (memory != nullptr)
memory += PAGE_SIZE;
}
2013-09-19 04:52:51 +01:00
}
void MapMemoryRegion(PageTable& page_table, VAddr base, u64 size, u8* target) {
ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: %016" PRIX64, size);
ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: %016" PRIX64, base);
MapPages(page_table, base / PAGE_SIZE, size / PAGE_SIZE, target, PageType::Memory);
}
2014-04-26 06:27:25 +01:00
void MapIoRegion(PageTable& page_table, VAddr base, u64 size, MemoryHookPointer mmio_handler) {
ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: %016" PRIX64, size);
ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: %016" PRIX64, base);
MapPages(page_table, base / PAGE_SIZE, size / PAGE_SIZE, nullptr, PageType::Special);
2016-01-30 18:41:04 +00:00
auto interval = boost::icl::discrete_interval<VAddr>::closed(base, base + size - 1);
SpecialRegion region{SpecialRegion::Type::IODevice, mmio_handler};
page_table.special_regions.add(std::make_pair(interval, std::set<SpecialRegion>{region}));
}
void UnmapRegion(PageTable& page_table, VAddr base, u64 size) {
ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: %016" PRIX64, size);
ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: %016" PRIX64, base);
MapPages(page_table, base / PAGE_SIZE, size / PAGE_SIZE, nullptr, PageType::Unmapped);
2016-04-16 23:57:57 +01:00
auto interval = boost::icl::discrete_interval<VAddr>::closed(base, base + size - 1);
page_table.special_regions.erase(interval);
}
2016-04-16 23:57:57 +01:00
void AddDebugHook(PageTable& page_table, VAddr base, u64 size, MemoryHookPointer hook) {
auto interval = boost::icl::discrete_interval<VAddr>::closed(base, base + size - 1);
SpecialRegion region{SpecialRegion::Type::DebugHook, hook};
page_table.special_regions.add(std::make_pair(interval, std::set<SpecialRegion>{region}));
2016-04-16 23:57:57 +01:00
}
void RemoveDebugHook(PageTable& page_table, VAddr base, u64 size, MemoryHookPointer hook) {
auto interval = boost::icl::discrete_interval<VAddr>::closed(base, base + size - 1);
SpecialRegion region{SpecialRegion::Type::DebugHook, hook};
page_table.special_regions.subtract(std::make_pair(interval, std::set<SpecialRegion>{region}));
}
2016-01-30 18:41:04 +00:00
/**
* This function should only be called for virtual addreses with attribute `PageType::Special`.
*/
static std::set<MemoryHookPointer> GetSpecialHandlers(const PageTable& page_table, VAddr vaddr,
u64 size) {
std::set<MemoryHookPointer> result;
auto interval = boost::icl::discrete_interval<VAddr>::closed(vaddr, vaddr + size - 1);
auto interval_list = page_table.special_regions.equal_range(interval);
for (auto it = interval_list.first; it != interval_list.second; ++it) {
for (const auto& region : it->second) {
result.insert(region.handler);
2016-01-30 18:41:04 +00:00
}
}
return result;
2016-01-30 18:41:04 +00:00
}
static std::set<MemoryHookPointer> GetSpecialHandlers(VAddr vaddr, u64 size) {
const PageTable& page_table = Core::CurrentProcess()->vm_manager.page_table;
return GetSpecialHandlers(page_table, vaddr, size);
}
/**
* Gets a pointer to the exact memory at the virtual address (i.e. not page aligned)
* using a VMA from the current process
*/
static u8* GetPointerFromVMA(const Kernel::Process& process, VAddr vaddr) {
u8* direct_pointer = nullptr;
auto& vm_manager = process.vm_manager;
auto it = vm_manager.FindVMA(vaddr);
ASSERT(it != vm_manager.vma_map.end());
auto& vma = it->second;
switch (vma.type) {
case Kernel::VMAType::AllocatedMemoryBlock:
direct_pointer = vma.backing_block->data() + vma.offset;
break;
case Kernel::VMAType::BackingMemory:
direct_pointer = vma.backing_memory;
break;
case Kernel::VMAType::Free:
return nullptr;
default:
UNREACHABLE();
}
return direct_pointer + (vaddr - vma.base);
}
/**
* Gets a pointer to the exact memory at the virtual address (i.e. not page aligned)
* using a VMA from the current process.
*/
static u8* GetPointerFromVMA(VAddr vaddr) {
return GetPointerFromVMA(*Core::CurrentProcess(), vaddr);
}
2016-01-30 18:41:04 +00:00
template <typename T>
T Read(const VAddr vaddr) {
const u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS];
if (page_pointer) {
// NOTE: Avoid adding any extra logic to this fast-path block
T value;
std::memcpy(&value, &page_pointer[vaddr & PAGE_MASK], sizeof(T));
return value;
}
// The memory access might do an MMIO or cached access, so we have to lock the HLE kernel state
std::lock_guard<std::recursive_mutex> lock(HLE::g_hle_lock);
PageType type = current_page_table->attributes[vaddr >> PAGE_BITS];
switch (type) {
case PageType::Unmapped:
LOG_ERROR(HW_Memory, "unmapped Read%lu @ 0x%08X", sizeof(T) * 8, vaddr);
return 0;
case PageType::Memory:
ASSERT_MSG(false, "Mapped memory page without a pointer @ %08X", vaddr);
break;
case PageType::RasterizerCachedMemory: {
RasterizerFlushVirtualRegion(vaddr, sizeof(T), FlushMode::Flush);
2016-04-16 23:57:57 +01:00
T value;
std::memcpy(&value, GetPointerFromVMA(vaddr), sizeof(T));
2016-04-16 23:57:57 +01:00
return value;
}
default:
UNREACHABLE();
}
2013-09-19 04:52:51 +01:00
}
template <typename T>
void Write(const VAddr vaddr, const T data) {
u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS];
if (page_pointer) {
// NOTE: Avoid adding any extra logic to this fast-path block
std::memcpy(&page_pointer[vaddr & PAGE_MASK], &data, sizeof(T));
return;
}
// The memory access might do an MMIO or cached access, so we have to lock the HLE kernel state
std::lock_guard<std::recursive_mutex> lock(HLE::g_hle_lock);
PageType type = current_page_table->attributes[vaddr >> PAGE_BITS];
switch (type) {
case PageType::Unmapped:
LOG_ERROR(HW_Memory, "unmapped Write%lu 0x%08X @ 0x%08X", sizeof(data) * 8, (u32)data,
vaddr);
return;
case PageType::Memory:
ASSERT_MSG(false, "Mapped memory page without a pointer @ %08X", vaddr);
break;
case PageType::RasterizerCachedMemory: {
RasterizerFlushVirtualRegion(vaddr, sizeof(T), FlushMode::Invalidate);
std::memcpy(GetPointerFromVMA(vaddr), &data, sizeof(T));
break;
2016-04-16 23:57:57 +01:00
}
default:
UNREACHABLE();
}
}
2014-04-26 06:27:25 +01:00
bool IsValidVirtualAddress(const Kernel::Process& process, const VAddr vaddr) {
auto& page_table = process.vm_manager.page_table;
const u8* page_pointer = page_table.pointers[vaddr >> PAGE_BITS];
if (page_pointer)
return true;
if (page_table.attributes[vaddr >> PAGE_BITS] == PageType::RasterizerCachedMemory)
return true;
if (page_table.attributes[vaddr >> PAGE_BITS] != PageType::Special)
return false;
return false;
}
bool IsValidVirtualAddress(const VAddr vaddr) {
return IsValidVirtualAddress(*Core::CurrentProcess(), vaddr);
}
bool IsValidPhysicalAddress(const PAddr paddr) {
return GetPhysicalPointer(paddr) != nullptr;
}
u8* GetPointer(const VAddr vaddr) {
u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS];
if (page_pointer) {
return page_pointer + (vaddr & PAGE_MASK);
}
if (current_page_table->attributes[vaddr >> PAGE_BITS] == PageType::RasterizerCachedMemory) {
return GetPointerFromVMA(vaddr);
}
LOG_ERROR(HW_Memory, "unknown GetPointer @ 0x%08x", vaddr);
return nullptr;
}
2016-06-27 18:42:42 +01:00
std::string ReadCString(VAddr vaddr, std::size_t max_length) {
std::string string;
string.reserve(max_length);
for (std::size_t i = 0; i < max_length; ++i) {
char c = Read8(vaddr);
if (c == '\0')
break;
string.push_back(c);
++vaddr;
}
string.shrink_to_fit();
return string;
}
u8* GetPhysicalPointer(PAddr address) {
struct MemoryArea {
PAddr paddr_base;
u32 size;
};
static constexpr MemoryArea memory_areas[] = {
{VRAM_PADDR, VRAM_SIZE},
{IO_AREA_PADDR, IO_AREA_SIZE},
{DSP_RAM_PADDR, DSP_RAM_SIZE},
{FCRAM_PADDR, FCRAM_N3DS_SIZE},
};
const auto area =
std::find_if(std::begin(memory_areas), std::end(memory_areas), [&](const auto& area) {
return address >= area.paddr_base && address < area.paddr_base + area.size;
});
if (area == std::end(memory_areas)) {
LOG_ERROR(HW_Memory, "unknown GetPhysicalPointer @ 0x%016" PRIX64, address);
return nullptr;
}
if (area->paddr_base == IO_AREA_PADDR) {
LOG_ERROR(HW_Memory, "MMIO mappings are not supported yet. phys_addr=0x%016" PRIX64,
address);
return nullptr;
}
u64 offset_into_region = address - area->paddr_base;
u8* target_pointer = nullptr;
switch (area->paddr_base) {
case VRAM_PADDR:
target_pointer = vram.data() + offset_into_region;
break;
case DSP_RAM_PADDR:
break;
case FCRAM_PADDR:
for (const auto& region : Kernel::memory_regions) {
if (offset_into_region >= region.base &&
offset_into_region < region.base + region.size) {
target_pointer =
region.linear_heap_memory->data() + offset_into_region - region.base;
break;
}
}
ASSERT_MSG(target_pointer != nullptr, "Invalid FCRAM address");
break;
default:
UNREACHABLE();
}
return target_pointer;
2015-04-28 02:59:06 +01:00
}
void RasterizerMarkRegionCached(Tegra::GPUVAddr gpu_addr, u64 size, bool cached) {
if (gpu_addr == 0) {
return;
}
// Iterate over a contiguous CPU address space, which corresponds to the specified GPU address
// space, marking the region as un/cached. The region is marked un/cached at a granularity of
// CPU pages, hence why we iterate on a CPU page basis (note: GPU page size is different). This
// assumes the specified GPU address region is contiguous as well.
u64 num_pages = ((gpu_addr + size - 1) >> PAGE_BITS) - (gpu_addr >> PAGE_BITS) + 1;
for (unsigned i = 0; i < num_pages; ++i, gpu_addr += PAGE_SIZE) {
boost::optional<VAddr> maybe_vaddr =
Core::System::GetInstance().GPU().memory_manager->GpuToCpuAddress(gpu_addr);
// The GPU <-> CPU virtual memory mapping is not 1:1
if (!maybe_vaddr) {
LOG_ERROR(HW_Memory,
"Trying to flush a cached region to an invalid physical address %08X",
gpu_addr);
continue;
}
VAddr vaddr = *maybe_vaddr;
PageType& page_type = current_page_table->attributes[vaddr >> PAGE_BITS];
if (cached) {
// Switch page type to cached if now cached
switch (page_type) {
case PageType::Unmapped:
// It is not necessary for a process to have this region mapped into its address
// space, for example, a system module need not have a VRAM mapping.
break;
case PageType::Memory:
page_type = PageType::RasterizerCachedMemory;
current_page_table->pointers[vaddr >> PAGE_BITS] = nullptr;
break;
case PageType::RasterizerCachedMemory:
// There can be more than one GPU region mapped per CPU region, so it's common that
// this area is already marked as cached.
break;
default:
UNREACHABLE();
}
} else {
// Switch page type to uncached if now uncached
switch (page_type) {
case PageType::Unmapped:
// It is not necessary for a process to have this region mapped into its address
// space, for example, a system module need not have a VRAM mapping.
break;
case PageType::Memory:
// There can be more than one GPU region mapped per CPU region, so it's common that
// this area is already unmarked as cached.
break;
case PageType::RasterizerCachedMemory: {
u8* pointer = GetPointerFromVMA(vaddr & ~PAGE_MASK);
if (pointer == nullptr) {
// It's possible that this function has been called while updating the pagetable
// after unmapping a VMA. In that case the underlying VMA will no longer exist,
// and we should just leave the pagetable entry blank.
page_type = PageType::Unmapped;
} else {
page_type = PageType::Memory;
current_page_table->pointers[vaddr >> PAGE_BITS] = pointer;
}
break;
}
default:
UNREACHABLE();
}
}
}
}
void RasterizerFlushVirtualRegion(VAddr start, u64 size, FlushMode mode) {
// Since pages are unmapped on shutdown after video core is shutdown, the renderer may be
// null here
if (VideoCore::g_renderer == nullptr) {
return;
}
VAddr end = start + size;
auto CheckRegion = [&](VAddr region_start, VAddr region_end) {
if (start >= region_end || end <= region_start) {
// No overlap with region
return;
}
VAddr overlap_start = std::max(start, region_start);
VAddr overlap_end = std::min(end, region_end);
std::vector<Tegra::GPUVAddr> gpu_addresses =
Core::System::GetInstance().GPU().memory_manager->CpuToGpuAddress(overlap_start);
if (gpu_addresses.empty()) {
return;
}
u64 overlap_size = overlap_end - overlap_start;
for (const auto& gpu_address : gpu_addresses) {
auto* rasterizer = VideoCore::g_renderer->Rasterizer();
switch (mode) {
case FlushMode::Flush:
rasterizer->FlushRegion(gpu_address, overlap_size);
break;
case FlushMode::Invalidate:
rasterizer->InvalidateRegion(gpu_address, overlap_size);
break;
case FlushMode::FlushAndInvalidate:
rasterizer->FlushAndInvalidateRegion(gpu_address, overlap_size);
break;
}
}
};
CheckRegion(PROCESS_IMAGE_VADDR, PROCESS_IMAGE_VADDR_END);
CheckRegion(HEAP_VADDR, HEAP_VADDR_END);
}
u8 Read8(const VAddr addr) {
return Read<u8>(addr);
2013-09-19 04:52:51 +01:00
}
u16 Read16(const VAddr addr) {
return Read<u16_le>(addr);
2013-09-19 04:52:51 +01:00
}
u32 Read32(const VAddr addr) {
return Read<u32_le>(addr);
2013-09-19 04:52:51 +01:00
}
u64 Read64(const VAddr addr) {
return Read<u64_le>(addr);
2013-09-19 04:52:51 +01:00
}
void ReadBlock(const Kernel::Process& process, const VAddr src_addr, void* dest_buffer,
const size_t size) {
auto& page_table = process.vm_manager.page_table;
2016-04-16 09:14:18 +01:00
size_t remaining_size = size;
size_t page_index = src_addr >> PAGE_BITS;
size_t page_offset = src_addr & PAGE_MASK;
while (remaining_size > 0) {
const size_t copy_amount =
std::min(static_cast<size_t>(PAGE_SIZE) - page_offset, remaining_size);
2017-09-27 00:26:09 +01:00
const VAddr current_vaddr = static_cast<VAddr>((page_index << PAGE_BITS) + page_offset);
2016-04-16 09:14:18 +01:00
switch (page_table.attributes[page_index]) {
case PageType::Unmapped: {
LOG_ERROR(HW_Memory, "unmapped ReadBlock @ 0x%08X (start address = 0x%08X, size = %zu)",
current_vaddr, src_addr, size);
2016-04-16 09:14:18 +01:00
std::memset(dest_buffer, 0, copy_amount);
break;
}
case PageType::Memory: {
DEBUG_ASSERT(page_table.pointers[page_index]);
2016-04-16 09:14:18 +01:00
const u8* src_ptr = page_table.pointers[page_index] + page_offset;
2016-04-16 09:14:18 +01:00
std::memcpy(dest_buffer, src_ptr, copy_amount);
break;
}
case PageType::RasterizerCachedMemory: {
RasterizerFlushVirtualRegion(current_vaddr, static_cast<u32>(copy_amount),
FlushMode::Flush);
std::memcpy(dest_buffer, GetPointerFromVMA(process, current_vaddr), copy_amount);
break;
}
2016-04-16 09:14:18 +01:00
default:
UNREACHABLE();
}
page_index++;
page_offset = 0;
dest_buffer = static_cast<u8*>(dest_buffer) + copy_amount;
2016-04-16 09:14:18 +01:00
remaining_size -= copy_amount;
}
}
void ReadBlock(const VAddr src_addr, void* dest_buffer, const size_t size) {
ReadBlock(*Core::CurrentProcess(), src_addr, dest_buffer, size);
}
void Write8(const VAddr addr, const u8 data) {
Write<u8>(addr, data);
2013-09-19 04:52:51 +01:00
}
void Write16(const VAddr addr, const u16 data) {
Write<u16_le>(addr, data);
2013-09-19 04:52:51 +01:00
}
void Write32(const VAddr addr, const u32 data) {
Write<u32_le>(addr, data);
2013-09-19 04:52:51 +01:00
}
void Write64(const VAddr addr, const u64 data) {
Write<u64_le>(addr, data);
2013-09-19 04:52:51 +01:00
}
void WriteBlock(const Kernel::Process& process, const VAddr dest_addr, const void* src_buffer,
const size_t size) {
auto& page_table = process.vm_manager.page_table;
2016-04-16 09:14:18 +01:00
size_t remaining_size = size;
size_t page_index = dest_addr >> PAGE_BITS;
size_t page_offset = dest_addr & PAGE_MASK;
while (remaining_size > 0) {
const size_t copy_amount =
std::min(static_cast<size_t>(PAGE_SIZE) - page_offset, remaining_size);
2017-09-27 00:26:09 +01:00
const VAddr current_vaddr = static_cast<VAddr>((page_index << PAGE_BITS) + page_offset);
2016-04-16 09:14:18 +01:00
switch (page_table.attributes[page_index]) {
case PageType::Unmapped: {
LOG_ERROR(HW_Memory,
"unmapped WriteBlock @ 0x%08X (start address = 0x%08X, size = %zu)",
current_vaddr, dest_addr, size);
2016-04-16 09:14:18 +01:00
break;
}
2016-04-16 09:14:18 +01:00
case PageType::Memory: {
DEBUG_ASSERT(page_table.pointers[page_index]);
2016-04-16 09:14:18 +01:00
u8* dest_ptr = page_table.pointers[page_index] + page_offset;
2016-04-16 09:14:18 +01:00
std::memcpy(dest_ptr, src_buffer, copy_amount);
break;
}
case PageType::RasterizerCachedMemory: {
RasterizerFlushVirtualRegion(current_vaddr, static_cast<u32>(copy_amount),
FlushMode::Invalidate);
std::memcpy(GetPointerFromVMA(process, current_vaddr), src_buffer, copy_amount);
break;
}
2016-04-16 09:14:18 +01:00
default:
UNREACHABLE();
}
page_index++;
page_offset = 0;
src_buffer = static_cast<const u8*>(src_buffer) + copy_amount;
2016-04-16 09:14:18 +01:00
remaining_size -= copy_amount;
2015-09-10 04:23:44 +01:00
}
}
void WriteBlock(const VAddr dest_addr, const void* src_buffer, const size_t size) {
WriteBlock(*Core::CurrentProcess(), dest_addr, src_buffer, size);
}
void ZeroBlock(const Kernel::Process& process, const VAddr dest_addr, const size_t size) {
auto& page_table = process.vm_manager.page_table;
2016-04-16 10:21:41 +01:00
size_t remaining_size = size;
size_t page_index = dest_addr >> PAGE_BITS;
size_t page_offset = dest_addr & PAGE_MASK;
static const std::array<u8, PAGE_SIZE> zeros = {};
2016-04-16 10:21:41 +01:00
while (remaining_size > 0) {
const size_t copy_amount =
std::min(static_cast<size_t>(PAGE_SIZE) - page_offset, remaining_size);
2017-09-27 00:26:09 +01:00
const VAddr current_vaddr = static_cast<VAddr>((page_index << PAGE_BITS) + page_offset);
2016-04-16 10:21:41 +01:00
switch (page_table.attributes[page_index]) {
case PageType::Unmapped: {
LOG_ERROR(HW_Memory, "unmapped ZeroBlock @ 0x%08X (start address = 0x%08X, size = %zu)",
current_vaddr, dest_addr, size);
2016-04-16 10:21:41 +01:00
break;
}
2016-04-16 10:21:41 +01:00
case PageType::Memory: {
DEBUG_ASSERT(page_table.pointers[page_index]);
2016-04-16 10:21:41 +01:00
u8* dest_ptr = page_table.pointers[page_index] + page_offset;
2016-04-16 10:21:41 +01:00
std::memset(dest_ptr, 0, copy_amount);
break;
}
case PageType::RasterizerCachedMemory: {
RasterizerFlushVirtualRegion(current_vaddr, static_cast<u32>(copy_amount),
FlushMode::Invalidate);
std::memset(GetPointerFromVMA(process, current_vaddr), 0, copy_amount);
break;
}
2016-04-16 10:21:41 +01:00
default:
UNREACHABLE();
}
page_index++;
page_offset = 0;
remaining_size -= copy_amount;
}
}
void CopyBlock(const Kernel::Process& process, VAddr dest_addr, VAddr src_addr, const size_t size) {
auto& page_table = process.vm_manager.page_table;
2016-04-16 15:22:45 +01:00
size_t remaining_size = size;
size_t page_index = src_addr >> PAGE_BITS;
size_t page_offset = src_addr & PAGE_MASK;
while (remaining_size > 0) {
const size_t copy_amount =
std::min(static_cast<size_t>(PAGE_SIZE) - page_offset, remaining_size);
2017-09-27 00:26:09 +01:00
const VAddr current_vaddr = static_cast<VAddr>((page_index << PAGE_BITS) + page_offset);
2016-04-16 15:22:45 +01:00
switch (page_table.attributes[page_index]) {
case PageType::Unmapped: {
LOG_ERROR(HW_Memory, "unmapped CopyBlock @ 0x%08X (start address = 0x%08X, size = %zu)",
current_vaddr, src_addr, size);
ZeroBlock(process, dest_addr, copy_amount);
2016-04-16 15:22:45 +01:00
break;
}
case PageType::Memory: {
DEBUG_ASSERT(page_table.pointers[page_index]);
const u8* src_ptr = page_table.pointers[page_index] + page_offset;
WriteBlock(process, dest_addr, src_ptr, copy_amount);
break;
}
case PageType::RasterizerCachedMemory: {
RasterizerFlushVirtualRegion(current_vaddr, static_cast<u32>(copy_amount),
FlushMode::Flush);
WriteBlock(process, dest_addr, GetPointerFromVMA(process, current_vaddr), copy_amount);
2016-04-16 15:22:45 +01:00
break;
}
default:
UNREACHABLE();
}
page_index++;
page_offset = 0;
2017-09-27 00:26:09 +01:00
dest_addr += static_cast<VAddr>(copy_amount);
src_addr += static_cast<VAddr>(copy_amount);
2016-04-16 15:22:45 +01:00
remaining_size -= copy_amount;
}
}
boost::optional<PAddr> TryVirtualToPhysicalAddress(const VAddr addr) {
if (addr == 0) {
return 0;
} else if (addr >= VRAM_VADDR && addr < VRAM_VADDR_END) {
return addr - VRAM_VADDR + VRAM_PADDR;
} else if (addr >= LINEAR_HEAP_VADDR && addr < LINEAR_HEAP_VADDR_END) {
return addr - LINEAR_HEAP_VADDR + FCRAM_PADDR;
} else if (addr >= NEW_LINEAR_HEAP_VADDR && addr < NEW_LINEAR_HEAP_VADDR_END) {
return addr - NEW_LINEAR_HEAP_VADDR + FCRAM_PADDR;
} else if (addr >= DSP_RAM_VADDR && addr < DSP_RAM_VADDR_END) {
return addr - DSP_RAM_VADDR + DSP_RAM_PADDR;
} else if (addr >= IO_AREA_VADDR && addr < IO_AREA_VADDR_END) {
return addr - IO_AREA_VADDR + IO_AREA_PADDR;
}
return boost::none;
}
PAddr VirtualToPhysicalAddress(const VAddr addr) {
auto paddr = TryVirtualToPhysicalAddress(addr);
if (!paddr) {
LOG_ERROR(HW_Memory, "Unknown virtual address @ 0x%016" PRIX64, addr);
// To help with debugging, set bit on address so that it's obviously invalid.
return addr | 0x80000000;
}
return *paddr;
}
boost::optional<VAddr> PhysicalToVirtualAddress(const PAddr addr) {
if (addr == 0) {
return 0;
} else if (addr >= VRAM_PADDR && addr < VRAM_PADDR_END) {
return addr - VRAM_PADDR + VRAM_VADDR;
} else if (addr >= FCRAM_PADDR && addr < FCRAM_PADDR_END) {
return addr - FCRAM_PADDR + Core::CurrentProcess()->GetLinearHeapAreaAddress();
} else if (addr >= DSP_RAM_PADDR && addr < DSP_RAM_PADDR_END) {
return addr - DSP_RAM_PADDR + DSP_RAM_VADDR;
} else if (addr >= IO_AREA_PADDR && addr < IO_AREA_PADDR_END) {
return addr - IO_AREA_PADDR + IO_AREA_VADDR;
}
return boost::none;
}
} // namespace Memory