yuzu-fork/src/core/gdbstub/gdbstub.cpp
polaris- 2732ec758d Fix read and write register blocks in gdbstub
Previously, the padding wasn't correctly accounted for which caused the gdbstub to read and write everything after R15 (starting with the dummy FPA registers) incorrectly, which caused CPSR to not be handled correctly. Everything appears to be working as expected with this change.
2015-11-22 07:48:26 -05:00

961 lines
25 KiB
C++

// Copyright 2013 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
// Originally written by Sven Peter <sven@fail0verflow.com> for anergistic.
#include <algorithm>
#include <climits>
#include <csignal>
#include <cstdarg>
#include <cstdio>
#include <cstring>
#include <fcntl.h>
#include <map>
#include <numeric>
#ifdef _MSC_VER
#include <WinSock2.h>
#include <ws2tcpip.h>
#include <common/x64/abi.h>
#include <io.h>
#include <iphlpapi.h>
#define SHUT_RDWR 2
#else
#include <unistd.h>
#include <sys/select.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <netinet/in.h>
#endif
#include "common/logging/log.h"
#include "common/string_util.h"
#include "core/core.h"
#include "core/memory.h"
#include "core/arm/arm_interface.h"
#include "core/gdbstub/gdbstub.h"
const int GDB_BUFFER_SIZE = 10000;
const char GDB_STUB_START = '$';
const char GDB_STUB_END = '#';
const char GDB_STUB_ACK = '+';
const char GDB_STUB_NACK = '-';
#ifndef SIGTRAP
const u32 SIGTRAP = 5;
#endif
#ifndef SIGTERM
const u32 SIGTERM = 15;
#endif
#ifndef MSG_WAITALL
const u32 MSG_WAITALL = 8;
#endif
const u32 R0_REGISTER = 0;
const u32 R15_REGISTER = 15;
const u32 CPSR_REGISTER = 25;
const u32 FPSCR_REGISTER = 58;
namespace GDBStub {
static int gdbserver_socket = -1;
static u8 command_buffer[GDB_BUFFER_SIZE];
static u32 command_length;
static u32 latest_signal = 0;
static bool step_break = false;
static bool memory_break = false;
// Binding to a port within the reserved ports range (0-1023) requires root permissions,
// so default to a port outside of that range.
static u16 gdbstub_port = 24689;
static bool halt_loop = true;
static bool step_loop = false;
std::atomic<bool> g_server_enabled(false);
#ifdef _WIN32
WSADATA InitData;
#endif
struct Breakpoint {
bool active;
PAddr addr;
u32 len;
};
static std::map<u32, Breakpoint> breakpoints_execute;
static std::map<u32, Breakpoint> breakpoints_read;
static std::map<u32, Breakpoint> breakpoints_write;
/**
* Turns hex string character into the equivalent byte.
*
* @param hex Input hex character to be turned into byte.
*/
static u8 HexCharToValue(u8 hex) {
if (hex >= '0' && hex <= '9') {
return hex - '0';
} else if (hex >= 'a' && hex <= 'f') {
return hex - 'a' + 0xA;
} else if (hex >= 'A' && hex <= 'F') {
return hex - 'A' + 0xA;
}
LOG_ERROR(Debug_GDBStub, "Invalid nibble: %c (%02x)\n", hex, hex);
return 0;
}
/**
* Turn nibble of byte into hex string character.
*
* @param n Nibble to be turned into hex character.
*/
static u8 NibbleToHex(u8 n) {
n &= 0xF;
if (n < 0xA) {
return '0' + n;
} else {
return 'A' + n - 0xA;
}
}
/**
* Converts input hex string characters into an array of equivalent of u8 bytes.
*
* @param dest Pointer to buffer to store u8 bytes.
* @param src Pointer to array of output hex string characters.
* @param len Length of src array.
*/
static u32 HexToInt(u8* src, u32 len) {
u32 output = 0;
while (len-- > 0) {
output = (output << 4) | HexCharToValue(src[0]);
src++;
}
return output;
}
/**
* Converts input array of u8 bytes into their equivalent hex string characters.
*
* @param dest Pointer to buffer to store output hex string characters.
* @param src Pointer to array of u8 bytes.
* @param len Length of src array.
*/
static void MemToGdbHex(u8* dest, u8* src, u32 len) {
while (len-- > 0) {
u8 tmp = *src++;
*dest++ = NibbleToHex(tmp >> 4);
*dest++ = NibbleToHex(tmp);
}
}
/**
* Converts input gdb-formatted hex string characters into an array of equivalent of u8 bytes.
*
* @param dest Pointer to buffer to store u8 bytes.
* @param src Pointer to array of output hex string characters.
* @param len Length of src array.
*/
static void GdbHexToMem(u8* dest, u8* src, u32 len) {
while (len-- > 0) {
*dest++ = (HexCharToValue(src[0]) << 4) | HexCharToValue(src[1]);
src += 2;
}
}
/**
* Convert a u32 into a gdb-formatted hex string.
*
* @param dest Pointer to buffer to store output hex string characters.
*/
static void IntToGdbHex(u8* dest, u32 v) {
for (int i = 0; i < 8; i += 2) {
dest[i + 1] = NibbleToHex(v >> (4 * i));
dest[i] = NibbleToHex(v >> (4 * (i + 1)));
}
}
/**
* Convert a gdb-formatted hex string into a u32.
*
* @param src Pointer to hex string.
*/
static u32 GdbHexToInt(u8* src) {
u32 output = 0;
for (int i = 0; i < 8; i += 2) {
output = (output << 4) | HexCharToValue(src[7 - i - 1]);
output = (output << 4) | HexCharToValue(src[7 - i]);
}
return output;
}
/// Read a byte from the gdb client.
static u8 ReadByte() {
u8 c;
size_t received_size = recv(gdbserver_socket, reinterpret_cast<char*>(&c), 1, MSG_WAITALL);
if (received_size != 1) {
LOG_ERROR(Debug_GDBStub, "recv failed : %ld", received_size);
Shutdown();
}
return c;
}
/// Calculate the checksum of the current command buffer.
static u8 CalculateChecksum(u8 *buffer, u32 length) {
return static_cast<u8>(std::accumulate(buffer, buffer + length, 0, std::plus<u8>()));
}
/**
* Get the list of breakpoints for a given breakpoint type.
*
* @param type Type of breakpoint list.
*/
static std::map<u32, Breakpoint>& GetBreakpointList(BreakpointType type) {
switch (type) {
case BreakpointType::Execute:
return breakpoints_execute;
case BreakpointType::Read:
return breakpoints_read;
case BreakpointType::Write:
return breakpoints_write;
default:
return breakpoints_read;
}
}
/**
* Remove the breakpoint from the given address of the specified type.
*
* @param type Type of breakpoint.
* @param addr Address of breakpoint.
*/
static void RemoveBreakpoint(BreakpointType type, PAddr addr) {
std::map<u32, Breakpoint>& p = GetBreakpointList(type);
auto bp = p.find(addr);
if (bp != p.end()) {
LOG_DEBUG(Debug_GDBStub, "gdb: removed a breakpoint: %08x bytes at %08x of type %d\n", bp->second.len, bp->second.addr, type);
p.erase(addr);
}
}
BreakpointAddress GetNextBreakpointFromAddress(PAddr addr, BreakpointType type) {
std::map<u32, Breakpoint>& p = GetBreakpointList(type);
auto next_breakpoint = p.lower_bound(addr);
BreakpointAddress breakpoint;
if (next_breakpoint != p.end()) {
breakpoint.address = next_breakpoint->first;
breakpoint.type = type;
} else {
breakpoint.address = 0;
breakpoint.type = BreakpointType::None;
}
return breakpoint;
}
bool CheckBreakpoint(PAddr addr, BreakpointType type) {
if (!IsConnected()) {
return false;
}
std::map<u32, Breakpoint>& p = GetBreakpointList(type);
auto bp = p.find(addr);
if (bp != p.end()) {
u32 len = bp->second.len;
// IDA Pro defaults to 4-byte breakpoints for all non-hardware breakpoints
// no matter if it's a 4-byte or 2-byte instruction. When you execute a
// Thumb instruction with a 4-byte breakpoint set, it will set a breakpoint on
// two instructions instead of the single instruction you placed the breakpoint
// on. So, as a way to make sure that execution breakpoints are only breaking
// on the instruction that was specified, set the length of an execution
// breakpoint to 1. This should be fine since the CPU should never begin executing
// an instruction anywhere except the beginning of the instruction.
if (type == BreakpointType::Execute) {
len = 1;
}
if (bp->second.active && (addr >= bp->second.addr && addr < bp->second.addr + len)) {
LOG_DEBUG(Debug_GDBStub, "Found breakpoint type %d @ %08x, range: %08x - %08x (%d bytes)\n", type, addr, bp->second.addr, bp->second.addr + len, len);
return true;
}
}
return false;
}
/**
* Send packet to gdb client.
*
* @param packet Packet to be sent to client.
*/
static void SendPacket(const char packet) {
size_t sent_size = send(gdbserver_socket, &packet, 1, 0);
if (sent_size != 1) {
LOG_ERROR(Debug_GDBStub, "send failed");
}
}
/**
* Send reply to gdb client.
*
* @param reply Reply to be sent to client.
*/
static void SendReply(const char* reply) {
if (!IsConnected()) {
return;
}
memset(command_buffer, 0, sizeof(command_buffer));
command_length = strlen(reply);
if (command_length + 4 > sizeof(command_buffer)) {
LOG_ERROR(Debug_GDBStub, "command_buffer overflow in SendReply");
return;
}
memcpy(command_buffer + 1, reply, command_length);
u8 checksum = CalculateChecksum(command_buffer, command_length + 1);
command_buffer[0] = GDB_STUB_START;
command_buffer[command_length + 1] = GDB_STUB_END;
command_buffer[command_length + 2] = NibbleToHex(checksum >> 4);
command_buffer[command_length + 3] = NibbleToHex(checksum);
u8* ptr = command_buffer;
u32 left = command_length + 4;
while (left > 0) {
int sent_size = send(gdbserver_socket, reinterpret_cast<char*>(ptr), left, 0);
if (sent_size < 0) {
LOG_ERROR(Debug_GDBStub, "gdb: send failed");
return Shutdown();
}
left -= sent_size;
ptr += sent_size;
}
}
/// Handle query command from gdb client.
static void HandleQuery() {
LOG_DEBUG(Debug_GDBStub, "gdb: query '%s'\n", command_buffer + 1);
if (!strcmp(reinterpret_cast<const char*>(command_buffer + 1), "TStatus")) {
SendReply("T0");
} else {
SendReply("");
}
}
/// Handle set thread command from gdb client.
static void HandleSetThread() {
if (memcmp(command_buffer, "Hg0", 3) == 0 ||
memcmp(command_buffer, "Hc-1", 4) == 0 ||
memcmp(command_buffer, "Hc0", 4) == 0 ||
memcmp(command_buffer, "Hc1", 4) == 0) {
return SendReply("OK");
}
SendReply("E01");
}
/**
* Send signal packet to client.
*
* @param signal Signal to be sent to client.
*/
void SendSignal(u32 signal) {
if (gdbserver_socket == -1) {
return;
}
latest_signal = signal;
std::string buffer = Common::StringFromFormat("T%02x%02x:%08x;%02x:%08x;", latest_signal, 15, htonl(Core::g_app_core->GetPC()), 13, htonl(Core::g_app_core->GetReg(13)));
LOG_DEBUG(Debug_GDBStub, "Response: %s", buffer.c_str());
SendReply(buffer.c_str());
}
/// Read command from gdb client.
static void ReadCommand() {
command_length = 0;
memset(command_buffer, 0, sizeof(command_buffer));
u8 c = ReadByte();
if (c == '+') {
//ignore ack
return;
} else if (c == 0x03) {
LOG_INFO(Debug_GDBStub, "gdb: found break command\n");
halt_loop = true;
SendSignal(SIGTRAP);
return;
} else if (c != GDB_STUB_START) {
LOG_DEBUG(Debug_GDBStub, "gdb: read invalid byte %02x\n", c);
return;
}
while ((c = ReadByte()) != GDB_STUB_END) {
if (command_length >= sizeof(command_buffer)) {
LOG_ERROR(Debug_GDBStub, "gdb: command_buffer overflow\n");
SendPacket(GDB_STUB_NACK);
return;
}
command_buffer[command_length++] = c;
}
u8 checksum_received = HexCharToValue(ReadByte()) << 4;
checksum_received |= HexCharToValue(ReadByte());
u8 checksum_calculated = CalculateChecksum(command_buffer, command_length);
if (checksum_received != checksum_calculated) {
LOG_ERROR(Debug_GDBStub, "gdb: invalid checksum: calculated %02x and read %02x for $%s# (length: %d)\n",
checksum_calculated, checksum_received, command_buffer, command_length);
command_length = 0;
SendPacket(GDB_STUB_NACK);
return;
}
SendPacket(GDB_STUB_ACK);
}
/// Check if there is data to be read from the gdb client.
static bool IsDataAvailable() {
if (!IsConnected()) {
return false;
}
fd_set fd_socket;
FD_ZERO(&fd_socket);
FD_SET(gdbserver_socket, &fd_socket);
struct timeval t;
t.tv_sec = 0;
t.tv_usec = 0;
if (select(gdbserver_socket + 1, &fd_socket, nullptr, nullptr, &t) < 0) {
LOG_ERROR(Debug_GDBStub, "select failed");
return false;
}
return FD_ISSET(gdbserver_socket, &fd_socket);
}
/// Send requested register to gdb client.
static void ReadRegister() {
static u8 reply[64];
memset(reply, 0, sizeof(reply));
u32 id = HexCharToValue(command_buffer[1]);
if (command_buffer[2] != '\0') {
id <<= 4;
id |= HexCharToValue(command_buffer[2]);
}
if (id >= R0_REGISTER && id <= R15_REGISTER) {
IntToGdbHex(reply, Core::g_app_core->GetReg(id));
} else if (id == CPSR_REGISTER) {
IntToGdbHex(reply, Core::g_app_core->GetCPSR());
} else if (id > CPSR_REGISTER && id < FPSCR_REGISTER) {
IntToGdbHex(reply, Core::g_app_core->GetVFPReg(id - CPSR_REGISTER - 1)); // VFP registers should start at 26, so one after CSPR_REGISTER
} else if (id == FPSCR_REGISTER) {
IntToGdbHex(reply, Core::g_app_core->GetVFPSystemReg(VFP_FPSCR)); // Get FPSCR
IntToGdbHex(reply + 8, 0);
} else {
return SendReply("E01");
}
SendReply(reinterpret_cast<char*>(reply));
}
/// Send all registers to the gdb client.
static void ReadRegisters() {
static u8 buffer[GDB_BUFFER_SIZE - 4];
memset(buffer, 0, sizeof(buffer));
u8* bufptr = buffer;
for (int i = 0, reg = 0; reg <= FPSCR_REGISTER; i++, reg++) {
if (reg <= R15_REGISTER) {
IntToGdbHex(bufptr + i * CHAR_BIT, Core::g_app_core->GetReg(reg));
} else if (reg == CPSR_REGISTER) {
IntToGdbHex(bufptr + i * CHAR_BIT, Core::g_app_core->GetCPSR());
} else if (reg == CPSR_REGISTER - 1) {
// Dummy FPA register, ignore
IntToGdbHex(bufptr + i * CHAR_BIT, 0);
} else if (reg < CPSR_REGISTER) {
// Dummy FPA registers, ignore
IntToGdbHex(bufptr + i * CHAR_BIT, 0);
IntToGdbHex(bufptr + (i + 1) * CHAR_BIT, 0);
IntToGdbHex(bufptr + (i + 2) * CHAR_BIT, 0);
i += 2;
} else if (reg > CPSR_REGISTER && reg < FPSCR_REGISTER) {
IntToGdbHex(bufptr + i * CHAR_BIT, Core::g_app_core->GetVFPReg(reg - CPSR_REGISTER - 1));
IntToGdbHex(bufptr + (i + 1) * CHAR_BIT, 0);
i++;
} else if (reg == FPSCR_REGISTER) {
IntToGdbHex(bufptr + i * CHAR_BIT, Core::g_app_core->GetVFPSystemReg(VFP_FPSCR));
}
}
SendReply(reinterpret_cast<char*>(buffer));
}
/// Modify data of register specified by gdb client.
static void WriteRegister() {
u8* buffer_ptr = command_buffer + 3;
u32 id = HexCharToValue(command_buffer[1]);
if (command_buffer[2] != '=') {
++buffer_ptr;
id <<= 4;
id |= HexCharToValue(command_buffer[2]);
}
if (id >= R0_REGISTER && id <= R15_REGISTER) {
Core::g_app_core->SetReg(id, GdbHexToInt(buffer_ptr));
} else if (id == CPSR_REGISTER) {
Core::g_app_core->SetCPSR(GdbHexToInt(buffer_ptr));
} else if (id > CPSR_REGISTER && id < FPSCR_REGISTER) {
Core::g_app_core->SetVFPReg(id - CPSR_REGISTER - 1, GdbHexToInt(buffer_ptr));
} else if (id == FPSCR_REGISTER) {
Core::g_app_core->SetVFPSystemReg(VFP_FPSCR, GdbHexToInt(buffer_ptr));
} else {
return SendReply("E01");
}
SendReply("OK");
}
/// Modify all registers with data received from the client.
static void WriteRegisters() {
u8* buffer_ptr = command_buffer + 1;
if (command_buffer[0] != 'G')
return SendReply("E01");
for (int i = 0, reg = 0; reg <= FPSCR_REGISTER; i++, reg++) {
if (reg <= R15_REGISTER) {
Core::g_app_core->SetReg(reg, GdbHexToInt(buffer_ptr + i * CHAR_BIT));
} else if (reg == CPSR_REGISTER) {
Core::g_app_core->SetCPSR(GdbHexToInt(buffer_ptr + i * CHAR_BIT));
} else if (reg == CPSR_REGISTER - 1) {
// Dummy FPA register, ignore
} else if (reg < CPSR_REGISTER) {
// Dummy FPA registers, ignore
i += 2;
} else if (reg > CPSR_REGISTER && reg < FPSCR_REGISTER) {
Core::g_app_core->SetVFPReg(reg - CPSR_REGISTER - 1, GdbHexToInt(buffer_ptr + i * CHAR_BIT));
i++; // Skip padding
} else if (reg == FPSCR_REGISTER) {
Core::g_app_core->SetVFPSystemReg(VFP_FPSCR, GdbHexToInt(buffer_ptr + i * CHAR_BIT));
}
}
SendReply("OK");
}
/// Read location in memory specified by gdb client.
static void ReadMemory() {
static u8 reply[GDB_BUFFER_SIZE - 4];
auto start_offset = command_buffer+1;
auto addr_pos = std::find(start_offset, command_buffer+command_length, ',');
PAddr addr = HexToInt(start_offset, addr_pos - start_offset);
start_offset = addr_pos+1;
u32 len = HexToInt(start_offset, (command_buffer + command_length) - start_offset);
LOG_DEBUG(Debug_GDBStub, "gdb: addr: %08x len: %08x\n", addr, len);
if (len * 2 > sizeof(reply)) {
SendReply("E01");
}
u8* data = Memory::GetPointer(addr);
if (!data) {
return SendReply("E0");
}
MemToGdbHex(reply, data, len);
reply[len * 2] = '\0';
SendReply(reinterpret_cast<char*>(reply));
}
/// Modify location in memory with data received from the gdb client.
static void WriteMemory() {
auto start_offset = command_buffer+1;
auto addr_pos = std::find(start_offset, command_buffer+command_length, ',');
PAddr addr = HexToInt(start_offset, addr_pos - start_offset);
start_offset = addr_pos+1;
auto len_pos = std::find(start_offset, command_buffer+command_length, ':');
u32 len = HexToInt(start_offset, len_pos - start_offset);
u8* dst = Memory::GetPointer(addr);
if (!dst) {
return SendReply("E00");
}
GdbHexToMem(dst, len_pos + 1, len);
SendReply("OK");
}
void Break(bool is_memory_break) {
if (!halt_loop) {
halt_loop = true;
SendSignal(SIGTRAP);
}
memory_break = is_memory_break;
}
/// Tell the CPU that it should perform a single step.
static void Step() {
step_loop = true;
halt_loop = true;
step_break = true;
SendSignal(SIGTRAP);
}
bool IsMemoryBreak() {
if (IsConnected()) {
return false;
}
return memory_break;
}
/// Tell the CPU to continue executing.
static void Continue() {
memory_break = false;
step_break = false;
step_loop = false;
halt_loop = false;
}
/**
* Commit breakpoint to list of breakpoints.
*
* @param type Type of breakpoint.
* @param addr Address of breakpoint.
* @param len Length of breakpoint.
*/
bool CommitBreakpoint(BreakpointType type, PAddr addr, u32 len) {
std::map<u32, Breakpoint>& p = GetBreakpointList(type);
Breakpoint breakpoint;
breakpoint.active = true;
breakpoint.addr = addr;
breakpoint.len = len;
p.insert({ addr, breakpoint });
LOG_DEBUG(Debug_GDBStub, "gdb: added %d breakpoint: %08x bytes at %08x\n", type, breakpoint.len, breakpoint.addr);
return true;
}
/// Handle add breakpoint command from gdb client.
static void AddBreakpoint() {
BreakpointType type;
u8 type_id = HexCharToValue(command_buffer[1]);
switch (type_id) {
case 0:
case 1:
type = BreakpointType::Execute;
break;
case 2:
type = BreakpointType::Write;
break;
case 3:
type = BreakpointType::Read;
break;
case 4:
type = BreakpointType::Access;
break;
default:
return SendReply("E01");
}
auto start_offset = command_buffer+3;
auto addr_pos = std::find(start_offset, command_buffer+command_length, ',');
PAddr addr = HexToInt(start_offset, addr_pos - start_offset);
start_offset = addr_pos+1;
u32 len = HexToInt(start_offset, (command_buffer + command_length) - start_offset);
if (type == BreakpointType::Access) {
// Access is made up of Read and Write types, so add both breakpoints
type = BreakpointType::Read;
if (!CommitBreakpoint(type, addr, len)) {
return SendReply("E02");
}
type = BreakpointType::Write;
}
if (!CommitBreakpoint(type, addr, len)) {
return SendReply("E02");
}
SendReply("OK");
}
/// Handle remove breakpoint command from gdb client.
static void RemoveBreakpoint() {
BreakpointType type;
u8 type_id = HexCharToValue(command_buffer[1]);
switch (type_id) {
case 0:
case 1:
type = BreakpointType::Execute;
break;
case 2:
type = BreakpointType::Write;
break;
case 3:
type = BreakpointType::Read;
break;
case 4:
type = BreakpointType::Access;
break;
default:
return SendReply("E01");
}
auto start_offset = command_buffer+3;
auto addr_pos = std::find(start_offset, command_buffer+command_length, ',');
PAddr addr = HexToInt(start_offset, addr_pos - start_offset);
start_offset = addr_pos+1;
u32 len = HexToInt(start_offset, (command_buffer + command_length) - start_offset);
if (type == BreakpointType::Access) {
// Access is made up of Read and Write types, so add both breakpoints
type = BreakpointType::Read;
RemoveBreakpoint(type, addr);
type = BreakpointType::Write;
}
RemoveBreakpoint(type, addr);
SendReply("OK");
}
void HandlePacket() {
if (!IsConnected()) {
return;
}
if (!IsDataAvailable()) {
return;
}
ReadCommand();
if (command_length == 0) {
return;
}
LOG_DEBUG(Debug_GDBStub, "Packet: %s", command_buffer);
switch (command_buffer[0]) {
case 'q':
HandleQuery();
break;
case 'H':
HandleSetThread();
break;
case '?':
SendSignal(latest_signal);
break;
case 'k':
Shutdown();
LOG_INFO(Debug_GDBStub, "killed by gdb");
return;
case 'g':
ReadRegisters();
break;
case 'G':
WriteRegisters();
break;
case 'p':
ReadRegister();
break;
case 'P':
WriteRegister();
break;
case 'm':
ReadMemory();
break;
case 'M':
WriteMemory();
break;
case 's':
Step();
return;
case 'C':
case 'c':
Continue();
return;
case 'z':
RemoveBreakpoint();
break;
case 'Z':
AddBreakpoint();
break;
default:
SendReply("");
break;
}
}
void SetServerPort(u16 port) {
gdbstub_port = port;
}
void ToggleServer(bool status) {
if (status) {
g_server_enabled = status;
// Start server
if (!IsConnected() && Core::g_sys_core != nullptr) {
Init();
}
}
else {
// Stop server
if (IsConnected()) {
Shutdown();
}
g_server_enabled = status;
}
}
void Init(u16 port) {
if (!g_server_enabled) {
// Set the halt loop to false in case the user enabled the gdbstub mid-execution.
// This way the CPU can still execute normally.
halt_loop = false;
step_loop = false;
return;
}
// Setup initial gdbstub status
halt_loop = true;
step_loop = false;
breakpoints_execute.clear();
breakpoints_read.clear();
breakpoints_write.clear();
// Start gdb server
LOG_INFO(Debug_GDBStub, "Starting GDB server on port %d...", port);
sockaddr_in saddr_server = {};
saddr_server.sin_family = AF_INET;
saddr_server.sin_port = htons(port);
saddr_server.sin_addr.s_addr = INADDR_ANY;
#ifdef _WIN32
WSAStartup(MAKEWORD(2, 2), &InitData);
#endif
int tmpsock = socket(PF_INET, SOCK_STREAM, 0);
if (tmpsock == -1) {
LOG_ERROR(Debug_GDBStub, "Failed to create gdb socket");
}
const sockaddr* server_addr = reinterpret_cast<const sockaddr*>(&saddr_server);
socklen_t server_addrlen = sizeof(saddr_server);
if (bind(tmpsock, server_addr, server_addrlen) < 0) {
LOG_ERROR(Debug_GDBStub, "Failed to bind gdb socket");
}
if (listen(tmpsock, 1) < 0) {
LOG_ERROR(Debug_GDBStub, "Failed to listen to gdb socket");
}
// Wait for gdb to connect
LOG_INFO(Debug_GDBStub, "Waiting for gdb to connect...\n");
sockaddr_in saddr_client;
sockaddr* client_addr = reinterpret_cast<sockaddr*>(&saddr_client);
socklen_t client_addrlen = sizeof(saddr_client);
gdbserver_socket = accept(tmpsock, client_addr, &client_addrlen);
if (gdbserver_socket < 0) {
// In the case that we couldn't start the server for whatever reason, just start CPU execution like normal.
halt_loop = false;
step_loop = false;
LOG_ERROR(Debug_GDBStub, "Failed to accept gdb client");
}
else {
LOG_INFO(Debug_GDBStub, "Client connected.\n");
saddr_client.sin_addr.s_addr = ntohl(saddr_client.sin_addr.s_addr);
}
// Clean up temporary socket if it's still alive at this point.
if (tmpsock != -1) {
shutdown(tmpsock, SHUT_RDWR);
}
}
void Init() {
Init(gdbstub_port);
}
void Shutdown() {
if (!g_server_enabled) {
return;
}
LOG_INFO(Debug_GDBStub, "Stopping GDB ...");
if (gdbserver_socket != -1) {
shutdown(gdbserver_socket, SHUT_RDWR);
gdbserver_socket = -1;
}
#ifdef _WIN32
WSACleanup();
#endif
LOG_INFO(Debug_GDBStub, "GDB stopped.");
}
bool IsConnected() {
return g_server_enabled && gdbserver_socket != -1;
}
bool GetCpuHaltFlag() {
return halt_loop;
}
bool GetCpuStepFlag() {
return step_loop;
}
void SetCpuStepFlag(bool is_step) {
step_loop = is_step;
}
};