We can iterate through the AdvancedGraphics settings and generate the UI
during runtime. This doesn't help runtime efficiency, but it helps a ton
in reducing the amount of work a developer needs in order to add a new
setting.
LoadString: Sanitize input
settings: Handle empty string, remove redundant category
settings: Rename Input to Controls, FS to DataStorage
settings: Fix Controls groups information
settings: Move use_docked_mode to System (again)
settings: Document
settings: Add type identification function
settings: Move registry into values
settings: Move global_reset_registry into values
settings: Separate AdvGraphics from Renderer
settings: More document
squash
settings: Use linkage object
uisettings: Move registry into settings
Probably wont build without
uisettings: Use settings linkage object
config: Load settings with a map
Uses the new all_settings vector to load settings.
qt-config: Rename settings category
qt config: Rename to read category
config: Read/write contols category with for_each
This is extremely limited due to the complexity of the Controls group,
but this handles the the settings that use the interface.
qt-config: Use new settings registry
qt-config: Read/write advgrphics
qt-config: Use settings linkage object
yuzu_cmd: Load setting off of vector
cmd-config: Finish settings rename
config: Read controls settings group with for_each
cmd/config: Move registry into values
cmd: Read adv graphics
cmd-config: Use settings linkage object
Internal testing has shown these result in higher committed memory usage in some systems.
Also Ob2 is already implied by O2, so that can be removed as well.
There are still some other issues not addressed here, but it's a start.
Workarounds for false-positive reports:
- `RasterizerAccelerated`: Put a gigantic array behind a `unique_ptr`,
because UBSan has a [hardcoded limit](https://stackoverflow.com/questions/64531383/c-runtime-error-using-fsanitize-undefined-object-has-a-possibly-invalid-vp)
of how big it thinks objects can be, specifically when dealing with
offset-to-top values used with multiple inheritance. Hopefully this
doesn't have a performance impact.
- `QueryCacheBase::QueryCacheBase`: Avoid an operation that UBSan thinks
is UB even though it at least arguably isn't. See the link in the
comment for more information.
Fixes for correct reports:
- `PageTable`, `Memory`: Use `uintptr_t` values instead of pointers to
avoid UB from pointer overflow (when pointer arithmetic wraps around
the address space).
- `KScheduler::Reload`: `thread->GetOwnerProcess()` can be `nullptr`;
avoid calling methods on it in this case. (The existing code returns
a garbage reference to a field, which is then passed into
`LoadWatchpointArray`, and apparently it's never used, so it's
harmless in practice but still triggers UBSan.)
- `KAutoObject::Close`: This function calls `this->Destroy()`, which
overwrites the beginning of the object with junk (specifically a free
list pointer). Then it calls `this->UnregisterWithKernel()`. UBSan
complains about a type mismatch because the vtable has been
overwritten, and I believe this is indeed UB. `UnregisterWithKernel`
also loads `m_kernel` from the 'freed' object, which seems to be
technically safe (the overwriting doesn't extend as far as that
field), but seems dubious. Switch to a `static` method and load
`m_kernel` in advance.
Allow for displaying options in the home options that are disabled with messages that explain why they are disabled.
This includes reasoning for the GPU driver installation button.
MinGW's strftime implementation does not work and cannot be used to
determine the time zone. Besides that, the string operations are
actually unnecessary since we can get the offset from
std::localtime.
Compare localtime to gmtime to find the zone offset on all platforms.