This makes the naming more closely match its meaning. It's just a
preferred core, not a required default core. This also makes the usages
of this term consistent across the thread and process implementations.
This function isn't a general purpose function that should be exposed to
everything, given it's specific to initializing the main thread for a
Process instance.
Given that, it's a tad bit more sensible to place this within
process.cpp, which keeps it visible only to the code that actually needs
it.
Provides extra information that makes it easier to tell if an executable
being run is using a 36-bit address space or a 39-bit address space.
While we don't support AArch32 executables yet, this also puts in
distinguishing information for the 32-bit address space types as well.
In all cases that these functions are needed, the VMManager can just be
retrieved and used instead of providing the same functions in Process'
interface.
This also makes it a little nicer dependency-wise, since it gets rid of
cases where the VMManager interface was being used, and then switched
over to using the interface for a Process instance. Instead, it makes
all accesses uniform and uses the VMManager instance for all necessary
tasks.
All the basic memory mapping functions did was forward to the Process'
VMManager instance anyways.
This stores a file in the save directory called '.yuzu_save_size' which stores the two save sizes (normal area and journaled area) sequentially as u64s.
Similar to the service capability flags, however, we currently don't
emulate the GIC, so this currently handles all interrupts as being valid
for the time being.
Handles the priority mask and core mask flags to allow building up the
masks to determine the usable thread priorities and cores for a kernel
process instance.
We've had the old kernel capability parser from Citra, however, this is
unused code and doesn't actually map to how the kernel on the Switch
does it. This introduces the basic functional skeleton for parsing
process capabilities.
If a thread handle is passed to svcGetProcessId, the kernel attempts to
access the process ID via the thread's instance's owning process.
Technically, this function should also be handling the kernel debug
objects as well, however we currently don't handle those kernel objects
yet, so I've left a note via a comment about it to remind myself when
implementing it in the future.
Starts the process ID counter off at 81, which is what the kernel itself
checks against internally when creating processes. It's actually
supposed to panic if the PID is less than 81 for a userland process.
Now it also indicates the name and max session count. This also gives a
name to the unknown bool. This indicates if the created port is supposed
to be using light handles or regular handles internally. This is passed
to the respective svcCreatePort parameter internally.
Allows capturing screenshot at the current internal resolution (native for software renderer), but a setting is available to capture it in other resolutions. The screenshot is saved to a single PNG in the current layout.
Adds the barebones enumeration constants and functions in place to
handle memory attributes, while also essentially leaving the attribute
itself non-functional.
Services created with the ServiceFramework base class install themselves as HleHandlers with an owning shared_ptr in the ServerPort ServiceFrameworkBase::port member variable, creating a cyclic ownership between ServiceFrameworkBase and the ServerPort, preventing deletion of the service objects.
Fix that by removing the ServiceFrameworkBase::port member because that was only used to detect multiple attempts at installing a port. Instead store a flag if the port was already installed to achieve the same functionality.
In the previous change, the memory writing was moved into the service
function itself, however it still had a problem, in that the entire
MemoryInfo structure wasn't being written out, only the first 32 bytes
of it were being written out. We still need to write out the trailing
two reference count members and zero out the padding bits.
Not doing this can result in wrong behavior in userland code in the following
scenario:
MemoryInfo info; // Put on the stack, not quaranteed to be zeroed out.
svcQueryMemory(&info, ...);
if (info.device_refcount == ...) // Whoops, uninitialized read.
This can also cause the wrong thing to happen if the user code uses
std::memcmp to compare the struct, with another one (questionable, but
allowed), as the padding bits are not guaranteed to be a deterministic
value. Note that the kernel itself also fully zeroes out the structure
before writing it out including the padding bits.
Moves the memory writes directly into QueryProcessMemory instead of
letting the wrapper function do it. It would be inaccurate to allow the
handler to do it because there's cases where memory shouldn't even be
written to. For example, if the given process handle is invalid.
HOWEVER, if the memory writing is within the wrapper, then we have no
control over if these memory writes occur, meaning in an error case, 68
bytes of memory randomly get trashed with zeroes, 64 of those being
written to wherever the memory info address points to, and the remaining
4 being written wherever the page info address points to.
One solution in this case would be to just conditionally check within
the handler itself, but this is kind of smelly, given the handler
shouldn't be performing conditional behavior itself, it's a behavior of
the managed function. In other words, if you remove the handler from the
equation entirely, does the function still retain its proper behavior?
In this case, no.
Now, we don't potentially trash memory from this function if an invalid
query is performed.
This would result in svcSetMemoryAttribute getting the wrong value for
its third parameter. This is currently fine, given the service function
is stubbed, however this will be unstubbed in a future change, so this
needs to change.
The kernel returns a memory info instance with the base address set to
the end of the address space, and the size of said block as
0 - address_space_end, it doesn't set both of said members to zero.
Gets the two structures out of an unrelated header and places them with
the rest of the memory management code.
This also corrects the structures. PageInfo appears to only contain a
32-bit flags member, and the extra padding word in MemoryInfo isn't
necessary.
Amends the MemoryState enum to use the same values like the actual
kernel does. Also provides the necessary operators to operate on them.
This will be necessary in the future for implementing
svcSetMemoryAttribute, as memory block state is checked before applying
the attribute.
The Process object kept itself alive indefinitely because its handle_table
contains a SharedMemory object which owns a reference to the same Process object,
creating a circular ownership scenario.
Break that up by storing only a non-owning pointer in the SharedMemory object.
fmt::format() returns a std::string instance by value, so calling
.c_str() on it here is equivalent to doing:
auto* ptr = std::string{}.c_str();
The data being pointed to isn't guaranteed to actually be valid anymore
after that expression ends. Instead, we can just take the string as is,
and provide the necessary formatting parameters.
Based off RE, the backing code only ever seems to use 0-2 as the range
of values 1 being a generic log enable, with 2 indicating logging should
go to the SD card. These are used as a set of flags internally.
Given we only care about receiving the log in general, we can just
always signify that we want logging in general.
This was causing some games (most notably Pokemon Quest) to softlock due to an event being fired when not supposed to. This also removes a hack wherein we were firing the state changed event when the game retrieves it, which is incorrect.
Amends it with missing values deduced from RE (ProperSystem being from
SwitchBrew for naming)
(SdCardUser wasn't that difficult to discern given it's used alongside
SdCardSystem when creating the save data indexer, based off the usage of
the string "saveDataIxrDbSd" nearby).
This was only ever public so that code could check whether or not a
handle was valid or not. Instead of exposing the object directly and
allowing external code to potentially mess with the map contents, we
just provide a member function that allows checking whether or not a
handle is valid.
This makes all member variables of the VMManager class private except
for the page table.
These auto-deduce the result based off its arguments, so there's no need
to do that work for the compiler, plus, the function return value itself
already indicates what we're returning.
No implementations actually modify instance state (and it would be
questionable to do that in the first place given the name), so we can
make this a const member function.
This allows the array to be constexpr. std::function is also allowed to
allocate memory, which makes its constructor non-trivial, we definitely
don't want to have all of these execute at runtime, taking up time
before the application can actually load.
While partially correct, this service call allows the retrieved event to
be null, as it also uses the same handle to check if it was referring to
a Process instance. The previous two changes put the necessary machinery
in place to allow for this, so we can simply call those member functions
here and be done with it.
Process instances can be waited upon for state changes. This is also
utilized by svcResetSignal, which will be modified in an upcoming
change. This simply puts all of the WaitObject related machinery in
place.
svcResetSignal relies on the event instance to have already been
signaled before attempting to reset it. If this isn't the case, then an
error code has to be returned.
This function simply does a handle table lookup for a writable event
instance identified by the given handle value. If a writable event
cannot be found for the given handle, then an invalid handle error is
returned. If a writable event is found, then it simply signals the
event, as one would expect.
svcCreateEvent operates by creating both a readable and writable event
and then attempts to add both to the current process' handle table.
If adding either of the events to the handle table fails, then the
relevant error from the handle table is returned.
If adding the readable event after the writable event to the table
fails, then the writable event is removed from the handle table and the
relevant error from the handle table is returned.
Note that since we do not currently test resource limits, we don't check
the resource limit table yet.
Two kernel object should absolutely never have the same handle ID type.
This can cause incorrect behavior when it comes to retrieving object
types from the handle table. In this case it allows converting a
WritableEvent into a ReadableEvent and vice-versa, which is undefined
behavior, since the object types are not the same.
This also corrects ClearEvent() to check both kernel types like the
kernel itself does.
Previously, ILibraryAppletAccessor would signal upon creation of any applet, but this is incorrect. A flag inside of the applet code determines whether or not creation should signal state change and swkbd happens to be one of these applets.
Load() is already given the process instance as a parameter, so instead
of coupling the class to the System class, we can just forward that
parameter to LoadNro()
The kernel uses the handle table of the current process to retrieve the
process that should be used to retrieve certain information. To someone
not familiar with the kernel, this might raise the question of "Ok,
sounds nice, but doesn't this make it impossible to retrieve information
about the current process?".
No, it doesn't, because HandleTable instances in the kernel have the
notion of a "pseudo-handle", where certain values allow the kernel to
lookup objects outside of a given handle table. Currently, there's only
a pseudo-handle for the current process (0xFFFF8001) and a pseudo-handle
for the current thread (0xFFFF8000), so to retrieve the current process,
one would just pass 0xFFFF8001 into svcGetInfo.
The lookup itself in the handle table would be something like:
template <typename T>
T* Lookup(Handle handle) {
if (handle == PSEUDO_HANDLE_CURRENT_PROCESS) {
return CurrentProcess();
}
if (handle == PSUEDO_HANDLE_CURRENT_THREAD) {
return CurrentThread();
}
return static_cast<T*>(&objects[handle]);
}
which, as is shown, allows accessing the current process or current
thread, even if those two objects aren't actually within the HandleTable
instance.
Our implementation of svcGetInfo was slightly incorrect in that we
weren't doing proper error checking everywhere. Instead, reorganize it
to be similar to how the kernel seems to do it.
We can just return a new instance of this when it's requested. This only
ever holds pointers to the existing registed caches, so it's not a large
object. Plus, this also gets rid of the need to keep around a separate
member function just to properly clear out the union.
Gets rid of one of five globals in the filesystem code.
This is the same behavior-wise as DeleteDirectoryRecursively, with the
only difference being that it doesn't delete the top level directory in
the hierarchy, so given:
root_dir/
- some_dir/
- File.txt
- OtherFile.txt
The end result is just:
root_dir/
More hardware accurate. On the actual system, there is a differentiation between the signaler and signalee, they form a client/server relationship much like ServerPort and ClientPort.
These parameters don't need to utilize a shared lifecycle directly in
the interface. Instead, the caller should provide a regular reference
for the function to use. This also allows the type system to flag
attempts to pass nullptr and makes it more generic, since it can now be
used in contexts where a shared_ptr isn't being used (in other words, we
don't constrain the usage of the interface to a particular mode of
memory management).
While we're at it, organize the array linearly, since clang formats the
array elements quite wide length-wise with the addition of the missing
'u'.
Technically also fixes patch lookup and icon lookup with Portuguese,
though I doubt anyone has actually run into this issue.
The opposite of the getter functions, this function sets the limit value
for a particular ResourceLimit resource category, with the restriction
that the new limit value must be equal to or greater than the current
resource value. If this is violated, then ERR_INVALID_STATE is returned.
e.g.
Assume:
current[Events] = 10;
limit[Events] = 20;
a call to this service function lowering the limit value to 10 would be
fine, however, attempting to lower it to 9 in this case would cause an
invalid state error.
This kernel service function is essentially the exact same as
svcGetResourceLimitLimitValue(), with the only difference being that it
retrieves the current value for a given resource category using the
provided resource limit handle, rather than retrieving the limiting
value of that resource limit instance.
Given these are exactly the same and only differ on returned values, we
can extract the existing code for svcGetResourceLimitLimitValue() to
handle both values.
This kernel service function retrieves the maximum allowable value for
a provided resource category for a given resource limit instance. Given
we already have the functionality added to the resource limit instance
itself, it's sufficient to just hook it up.
The error scenarios for this are:
1. If an invalid resource category type is provided, then ERR_INVALID_ENUM is returned.
2. If an invalid handle is provided, then ERR_INVALID_HANDLE is returned (bad thing goes in, bad thing goes out, as one would expect).
If neither of the above error cases occur, then the out parameter is
provided with the maximum limit value for the given category and success
is returned.
This function simply creates a ResourceLimit instance and attempts to
create a handle for it within the current process' handle table. If the
kernal fails to either create the ResourceLimit instance or create a
handle for the ResourceLimit instance, it returns a failure code
(OUT_OF_RESOURCE, and HANDLE_TABLE_FULL respectively). Finally, it exits
by providing the output parameter with the handle value for the
ResourceLimit instance and returning that it was successful.
Note: We do not return OUT_OF_RESOURCE because, if yuzu runs out of
available memory, then new will currently throw. We *could* allocate the
kernel instance with std::nothrow, however this would be inconsistent
with how all other kernel objects are currently allocated.
Avoids the need to create a copy of the std::string instance
(potentially allocating).
The only reason RegisterService takes its argument by value is because
it's std::moved internally.
Keeps the CPU-specific behavior from being spread throughout the main
System class. This will also act as the home to contain member functions
that perform operations on all cores. The reason for this being that the
following pattern is sort of prevalent throughout sections of the
codebase:
If clearing the instruction cache for all 4 cores is necessary:
Core::System::GetInstance().ArmInterface(0).ClearInstructionCache();
Core::System::GetInstance().ArmInterface(1).ClearInstructionCache();
Core::System::GetInstance().ArmInterface(2).ClearInstructionCache();
Core::System::GetInstance().ArmInterface(3).ClearInstructionCache();
This is kind of... well, silly to copy around whenever it's needed.
especially when it can be reduced down to a single line.
This change also puts the basics in place to begin "ungrafting" all of the
forwarding member functions from the System class that are used to
access CPU state or invoke CPU-specific behavior. As such, this change
itself makes no changes to the direct external interface of System. This
will be covered by another changeset.
The interface for shared memory was changed, but another commit was
merged that relied on the (previously public) internals of SharedMemory.
This amends that discrepancy.
The decision was made to name them LayeredExeFS instead of just LayeredFS to differentiate from normal RomFS-based mods. The name may be long/unweildy, but conveys the meaning well.
This will scan the <mod>/exefs dir for all files and then layer those on top of the game's exefs and use this as the new exefs. This allows for overriding of the compressed NSOs or adding new files. This does use the same dir as IPS/IPSwitch patch, but since the loader will not look for those they are ignored.
<random> isn't necesary directly within the header and can be placed in
the cpp file where its needed. Avoids propagating random generation
utilities via a header file.