Merge pull request #2976 from FernandoS27/cache-fast-brx-rebased

Implement Fast BRX, fix TXQ and addapt the Shader Cache for it
This commit is contained in:
Rodrigo Locatti 2019-10-26 16:56:13 -03:00 committed by GitHub
commit 26f3e18c5c
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
29 changed files with 1492 additions and 872 deletions

View file

@ -85,10 +85,12 @@ set(HASH_FILES
"${VIDEO_CORE}/shader/decode/xmad.cpp"
"${VIDEO_CORE}/shader/ast.cpp"
"${VIDEO_CORE}/shader/ast.h"
"${VIDEO_CORE}/shader/control_flow.cpp"
"${VIDEO_CORE}/shader/control_flow.h"
"${VIDEO_CORE}/shader/compiler_settings.cpp"
"${VIDEO_CORE}/shader/compiler_settings.h"
"${VIDEO_CORE}/shader/const_buffer_locker.cpp"
"${VIDEO_CORE}/shader/const_buffer_locker.h"
"${VIDEO_CORE}/shader/control_flow.cpp"
"${VIDEO_CORE}/shader/control_flow.h"
"${VIDEO_CORE}/shader/decode.cpp"
"${VIDEO_CORE}/shader/expr.cpp"
"${VIDEO_CORE}/shader/expr.h"

View file

@ -74,10 +74,12 @@ add_custom_command(OUTPUT scm_rev.cpp
"${VIDEO_CORE}/shader/decode/xmad.cpp"
"${VIDEO_CORE}/shader/ast.cpp"
"${VIDEO_CORE}/shader/ast.h"
"${VIDEO_CORE}/shader/control_flow.cpp"
"${VIDEO_CORE}/shader/control_flow.h"
"${VIDEO_CORE}/shader/compiler_settings.cpp"
"${VIDEO_CORE}/shader/compiler_settings.h"
"${VIDEO_CORE}/shader/const_buffer_locker.cpp"
"${VIDEO_CORE}/shader/const_buffer_locker.h"
"${VIDEO_CORE}/shader/control_flow.cpp"
"${VIDEO_CORE}/shader/control_flow.h"
"${VIDEO_CORE}/shader/decode.cpp"
"${VIDEO_CORE}/shader/expr.cpp"
"${VIDEO_CORE}/shader/expr.h"

View file

@ -6,6 +6,8 @@
#include <cstddef>
#include <cstring>
#include <utility>
#include <boost/functional/hash.hpp>
#include "common/cityhash.h"
#include "common/common_types.h"
@ -68,4 +70,13 @@ struct HashableStruct {
}
};
struct PairHash {
template <class T1, class T2>
std::size_t operator()(const std::pair<T1, T2>& pair) const noexcept {
std::size_t seed = std::hash<T1>()(pair.first);
boost::hash_combine(seed, std::hash<T2>()(pair.second));
return seed;
}
};
} // namespace Common

View file

@ -6,6 +6,7 @@ add_library(video_core STATIC
dma_pusher.h
debug_utils/debug_utils.cpp
debug_utils/debug_utils.h
engines/const_buffer_engine_interface.h
engines/const_buffer_info.h
engines/engine_upload.cpp
engines/engine_upload.h
@ -107,10 +108,12 @@ add_library(video_core STATIC
shader/decode/other.cpp
shader/ast.cpp
shader/ast.h
shader/control_flow.cpp
shader/control_flow.h
shader/compiler_settings.cpp
shader/compiler_settings.h
shader/const_buffer_locker.cpp
shader/const_buffer_locker.h
shader/control_flow.cpp
shader/control_flow.h
shader/decode.cpp
shader/expr.cpp
shader/expr.h

View file

@ -0,0 +1,119 @@
// Copyright 2019 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <type_traits>
#include "common/bit_field.h"
#include "common/common_types.h"
#include "video_core/engines/shader_bytecode.h"
#include "video_core/textures/texture.h"
namespace Tegra::Engines {
enum class ShaderType : u32 {
Vertex = 0,
TesselationControl = 1,
TesselationEval = 2,
Geometry = 3,
Fragment = 4,
Compute = 5,
};
struct SamplerDescriptor {
union {
BitField<0, 20, Tegra::Shader::TextureType> texture_type;
BitField<20, 1, u32> is_array;
BitField<21, 1, u32> is_buffer;
BitField<22, 1, u32> is_shadow;
u32 raw{};
};
bool operator==(const SamplerDescriptor& rhs) const noexcept {
return raw == rhs.raw;
}
bool operator!=(const SamplerDescriptor& rhs) const noexcept {
return !operator==(rhs);
}
static SamplerDescriptor FromTicTexture(Tegra::Texture::TextureType tic_texture_type) {
SamplerDescriptor result;
switch (tic_texture_type) {
case Tegra::Texture::TextureType::Texture1D:
result.texture_type.Assign(Tegra::Shader::TextureType::Texture1D);
result.is_array.Assign(0);
result.is_buffer.Assign(0);
result.is_shadow.Assign(0);
return result;
case Tegra::Texture::TextureType::Texture2D:
result.texture_type.Assign(Tegra::Shader::TextureType::Texture2D);
result.is_array.Assign(0);
result.is_buffer.Assign(0);
result.is_shadow.Assign(0);
return result;
case Tegra::Texture::TextureType::Texture3D:
result.texture_type.Assign(Tegra::Shader::TextureType::Texture3D);
result.is_array.Assign(0);
result.is_buffer.Assign(0);
result.is_shadow.Assign(0);
return result;
case Tegra::Texture::TextureType::TextureCubemap:
result.texture_type.Assign(Tegra::Shader::TextureType::TextureCube);
result.is_array.Assign(0);
result.is_buffer.Assign(0);
result.is_shadow.Assign(0);
return result;
case Tegra::Texture::TextureType::Texture1DArray:
result.texture_type.Assign(Tegra::Shader::TextureType::Texture1D);
result.is_array.Assign(1);
result.is_buffer.Assign(0);
result.is_shadow.Assign(0);
return result;
case Tegra::Texture::TextureType::Texture2DArray:
result.texture_type.Assign(Tegra::Shader::TextureType::Texture2D);
result.is_array.Assign(1);
result.is_buffer.Assign(0);
result.is_shadow.Assign(0);
return result;
case Tegra::Texture::TextureType::Texture1DBuffer:
result.texture_type.Assign(Tegra::Shader::TextureType::Texture1D);
result.is_array.Assign(0);
result.is_buffer.Assign(1);
result.is_shadow.Assign(0);
return result;
case Tegra::Texture::TextureType::Texture2DNoMipmap:
result.texture_type.Assign(Tegra::Shader::TextureType::Texture2D);
result.is_array.Assign(0);
result.is_buffer.Assign(0);
result.is_shadow.Assign(0);
return result;
case Tegra::Texture::TextureType::TextureCubeArray:
result.texture_type.Assign(Tegra::Shader::TextureType::TextureCube);
result.is_array.Assign(1);
result.is_buffer.Assign(0);
result.is_shadow.Assign(0);
return result;
default:
result.texture_type.Assign(Tegra::Shader::TextureType::Texture2D);
result.is_array.Assign(0);
result.is_buffer.Assign(0);
result.is_shadow.Assign(0);
return result;
}
}
};
static_assert(std::is_trivially_copyable_v<SamplerDescriptor>);
class ConstBufferEngineInterface {
public:
virtual ~ConstBufferEngineInterface() = default;
virtual u32 AccessConstBuffer32(ShaderType stage, u64 const_buffer, u64 offset) const = 0;
virtual SamplerDescriptor AccessBoundSampler(ShaderType stage, u64 offset) const = 0;
virtual SamplerDescriptor AccessBindlessSampler(ShaderType stage, u64 const_buffer,
u64 offset) const = 0;
virtual u32 GetBoundBuffer() const = 0;
};
} // namespace Tegra::Engines

View file

@ -70,13 +70,31 @@ Texture::FullTextureInfo KeplerCompute::GetTextureInfo(const Texture::TextureHan
GetTSCEntry(tex_handle.tsc_id)};
}
u32 KeplerCompute::AccessConstBuffer32(u64 const_buffer, u64 offset) const {
u32 KeplerCompute::AccessConstBuffer32(ShaderType stage, u64 const_buffer, u64 offset) const {
ASSERT(stage == ShaderType::Compute);
const auto& buffer = launch_description.const_buffer_config[const_buffer];
u32 result;
std::memcpy(&result, memory_manager.GetPointer(buffer.Address() + offset), sizeof(u32));
return result;
}
SamplerDescriptor KeplerCompute::AccessBoundSampler(ShaderType stage, u64 offset) const {
return AccessBindlessSampler(stage, regs.tex_cb_index, offset * sizeof(Texture::TextureHandle));
}
SamplerDescriptor KeplerCompute::AccessBindlessSampler(ShaderType stage, u64 const_buffer,
u64 offset) const {
ASSERT(stage == ShaderType::Compute);
const auto& tex_info_buffer = launch_description.const_buffer_config[const_buffer];
const GPUVAddr tex_info_address = tex_info_buffer.Address() + offset;
const Texture::TextureHandle tex_handle{memory_manager.Read<u32>(tex_info_address)};
const Texture::FullTextureInfo tex_info = GetTextureInfo(tex_handle, offset);
SamplerDescriptor result = SamplerDescriptor::FromTicTexture(tex_info.tic.texture_type.Value());
result.is_shadow.Assign(tex_info.tsc.depth_compare_enabled.Value());
return result;
}
void KeplerCompute::ProcessLaunch() {
const GPUVAddr launch_desc_loc = regs.launch_desc_loc.Address();
memory_manager.ReadBlockUnsafe(launch_desc_loc, &launch_description,

View file

@ -10,6 +10,7 @@
#include "common/bit_field.h"
#include "common/common_funcs.h"
#include "common/common_types.h"
#include "video_core/engines/const_buffer_engine_interface.h"
#include "video_core/engines/engine_upload.h"
#include "video_core/gpu.h"
#include "video_core/textures/texture.h"
@ -37,7 +38,7 @@ namespace Tegra::Engines {
#define KEPLER_COMPUTE_REG_INDEX(field_name) \
(offsetof(Tegra::Engines::KeplerCompute::Regs, field_name) / sizeof(u32))
class KeplerCompute final {
class KeplerCompute final : public ConstBufferEngineInterface {
public:
explicit KeplerCompute(Core::System& system, VideoCore::RasterizerInterface& rasterizer,
MemoryManager& memory_manager);
@ -201,7 +202,16 @@ public:
Texture::FullTextureInfo GetTextureInfo(const Texture::TextureHandle tex_handle,
std::size_t offset) const;
u32 AccessConstBuffer32(u64 const_buffer, u64 offset) const;
u32 AccessConstBuffer32(ShaderType stage, u64 const_buffer, u64 offset) const override;
SamplerDescriptor AccessBoundSampler(ShaderType stage, u64 offset) const override;
SamplerDescriptor AccessBindlessSampler(ShaderType stage, u64 const_buffer,
u64 offset) const override;
u32 GetBoundBuffer() const override {
return regs.tex_cb_index;
}
private:
Core::System& system;

View file

@ -847,7 +847,8 @@ void Maxwell3D::ProcessClearBuffers() {
rasterizer.Clear();
}
u32 Maxwell3D::AccessConstBuffer32(Regs::ShaderStage stage, u64 const_buffer, u64 offset) const {
u32 Maxwell3D::AccessConstBuffer32(ShaderType stage, u64 const_buffer, u64 offset) const {
ASSERT(stage != ShaderType::Compute);
const auto& shader_stage = state.shader_stages[static_cast<std::size_t>(stage)];
const auto& buffer = shader_stage.const_buffers[const_buffer];
u32 result;
@ -855,4 +856,22 @@ u32 Maxwell3D::AccessConstBuffer32(Regs::ShaderStage stage, u64 const_buffer, u6
return result;
}
SamplerDescriptor Maxwell3D::AccessBoundSampler(ShaderType stage, u64 offset) const {
return AccessBindlessSampler(stage, regs.tex_cb_index, offset * sizeof(Texture::TextureHandle));
}
SamplerDescriptor Maxwell3D::AccessBindlessSampler(ShaderType stage, u64 const_buffer,
u64 offset) const {
ASSERT(stage != ShaderType::Compute);
const auto& shader = state.shader_stages[static_cast<std::size_t>(stage)];
const auto& tex_info_buffer = shader.const_buffers[const_buffer];
const GPUVAddr tex_info_address = tex_info_buffer.address + offset;
const Texture::TextureHandle tex_handle{memory_manager.Read<u32>(tex_info_address)};
const Texture::FullTextureInfo tex_info = GetTextureInfo(tex_handle, offset);
SamplerDescriptor result = SamplerDescriptor::FromTicTexture(tex_info.tic.texture_type.Value());
result.is_shadow.Assign(tex_info.tsc.depth_compare_enabled.Value());
return result;
}
} // namespace Tegra::Engines

View file

@ -15,6 +15,7 @@
#include "common/common_funcs.h"
#include "common/common_types.h"
#include "common/math_util.h"
#include "video_core/engines/const_buffer_engine_interface.h"
#include "video_core/engines/const_buffer_info.h"
#include "video_core/engines/engine_upload.h"
#include "video_core/gpu.h"
@ -44,7 +45,7 @@ namespace Tegra::Engines {
#define MAXWELL3D_REG_INDEX(field_name) \
(offsetof(Tegra::Engines::Maxwell3D::Regs, field_name) / sizeof(u32))
class Maxwell3D final {
class Maxwell3D final : public ConstBufferEngineInterface {
public:
explicit Maxwell3D(Core::System& system, VideoCore::RasterizerInterface& rasterizer,
MemoryManager& memory_manager);
@ -1257,7 +1258,16 @@ public:
/// Returns the texture information for a specific texture in a specific shader stage.
Texture::FullTextureInfo GetStageTexture(Regs::ShaderStage stage, std::size_t offset) const;
u32 AccessConstBuffer32(Regs::ShaderStage stage, u64 const_buffer, u64 offset) const;
u32 AccessConstBuffer32(ShaderType stage, u64 const_buffer, u64 offset) const override;
SamplerDescriptor AccessBoundSampler(ShaderType stage, u64 offset) const override;
SamplerDescriptor AccessBindlessSampler(ShaderType stage, u64 const_buffer,
u64 offset) const override;
u32 GetBoundBuffer() const override {
return regs.tex_cb_index;
}
/// Memory for macro code - it's undetermined how big this is, however 1MB is much larger than
/// we've seen used.

View file

@ -975,7 +975,8 @@ TextureBufferUsage RasterizerOpenGL::SetupDrawTextures(Maxwell::ShaderStage stag
}
const auto cbuf = entry.GetBindlessCBuf();
Tegra::Texture::TextureHandle tex_handle;
tex_handle.raw = maxwell3d.AccessConstBuffer32(stage, cbuf.first, cbuf.second);
Tegra::Engines::ShaderType shader_type = static_cast<Tegra::Engines::ShaderType>(stage);
tex_handle.raw = maxwell3d.AccessConstBuffer32(shader_type, cbuf.first, cbuf.second);
return maxwell3d.GetTextureInfo(tex_handle, entry.GetOffset());
}();
@ -1005,7 +1006,8 @@ TextureBufferUsage RasterizerOpenGL::SetupComputeTextures(const Shader& kernel)
}
const auto cbuf = entry.GetBindlessCBuf();
Tegra::Texture::TextureHandle tex_handle;
tex_handle.raw = compute.AccessConstBuffer32(cbuf.first, cbuf.second);
tex_handle.raw = compute.AccessConstBuffer32(Tegra::Engines::ShaderType::Compute,
cbuf.first, cbuf.second);
return compute.GetTextureInfo(tex_handle, entry.GetOffset());
}();
@ -1050,7 +1052,8 @@ void RasterizerOpenGL::SetupComputeImages(const Shader& shader) {
}
const auto cbuf = entry.GetBindlessCBuf();
Tegra::Texture::TextureHandle tex_handle;
tex_handle.raw = compute.AccessConstBuffer32(cbuf.first, cbuf.second);
tex_handle.raw = compute.AccessConstBuffer32(Tegra::Engines::ShaderType::Compute,
cbuf.first, cbuf.second);
return compute.GetTextureInfo(tex_handle, entry.GetOffset()).tic;
}();
SetupImage(bindpoint, tic, entry);

View file

@ -3,13 +3,16 @@
// Refer to the license.txt file included.
#include <mutex>
#include <optional>
#include <string>
#include <thread>
#include <unordered_set>
#include <boost/functional/hash.hpp>
#include "common/assert.h"
#include "common/hash.h"
#include "common/scope_exit.h"
#include "core/core.h"
#include "core/frontend/emu_window.h"
#include "video_core/engines/kepler_compute.h"
#include "video_core/engines/maxwell_3d.h"
#include "video_core/memory_manager.h"
#include "video_core/renderer_opengl/gl_rasterizer.h"
@ -21,18 +24,20 @@
namespace OpenGL {
using Tegra::Engines::ShaderType;
using VideoCommon::Shader::ConstBufferLocker;
using VideoCommon::Shader::ProgramCode;
using VideoCommon::Shader::ShaderIR;
namespace {
// One UBO is always reserved for emulation values on staged shaders
constexpr u32 STAGE_RESERVED_UBOS = 1;
struct UnspecializedShader {
std::string code;
GLShader::ShaderEntries entries;
ProgramType program_type;
};
constexpr u32 STAGE_MAIN_OFFSET = 10;
constexpr u32 KERNEL_MAIN_OFFSET = 0;
namespace {
constexpr VideoCommon::Shader::CompilerSettings COMPILER_SETTINGS{};
/// Gets the address for the specified shader stage program
GPUVAddr GetShaderAddress(Core::System& system, Maxwell::ShaderProgram program) {
@ -41,6 +46,39 @@ GPUVAddr GetShaderAddress(Core::System& system, Maxwell::ShaderProgram program)
return gpu.regs.code_address.CodeAddress() + shader_config.offset;
}
/// Gets if the current instruction offset is a scheduler instruction
constexpr bool IsSchedInstruction(std::size_t offset, std::size_t main_offset) {
// Sched instructions appear once every 4 instructions.
constexpr std::size_t SchedPeriod = 4;
const std::size_t absolute_offset = offset - main_offset;
return (absolute_offset % SchedPeriod) == 0;
}
/// Calculates the size of a program stream
std::size_t CalculateProgramSize(const GLShader::ProgramCode& program) {
constexpr std::size_t start_offset = 10;
// This is the encoded version of BRA that jumps to itself. All Nvidia
// shaders end with one.
constexpr u64 self_jumping_branch = 0xE2400FFFFF07000FULL;
constexpr u64 mask = 0xFFFFFFFFFF7FFFFFULL;
std::size_t offset = start_offset;
while (offset < program.size()) {
const u64 instruction = program[offset];
if (!IsSchedInstruction(offset, start_offset)) {
if ((instruction & mask) == self_jumping_branch) {
// End on Maxwell's "nop" instruction
break;
}
if (instruction == 0) {
break;
}
}
offset++;
}
// The last instruction is included in the program size
return std::min(offset + 1, program.size());
}
/// Gets the shader program code from memory for the specified address
ProgramCode GetShaderCode(Tegra::MemoryManager& memory_manager, const GPUVAddr gpu_addr,
const u8* host_ptr) {
@ -51,6 +89,7 @@ ProgramCode GetShaderCode(Tegra::MemoryManager& memory_manager, const GPUVAddr g
});
memory_manager.ReadBlockUnsafe(gpu_addr, program_code.data(),
program_code.size() * sizeof(u64));
program_code.resize(CalculateProgramSize(program_code));
return program_code;
}
@ -71,14 +110,6 @@ constexpr GLenum GetShaderType(ProgramType program_type) {
}
}
/// Gets if the current instruction offset is a scheduler instruction
constexpr bool IsSchedInstruction(std::size_t offset, std::size_t main_offset) {
// Sched instructions appear once every 4 instructions.
constexpr std::size_t SchedPeriod = 4;
const std::size_t absolute_offset = offset - main_offset;
return (absolute_offset % SchedPeriod) == 0;
}
/// Describes primitive behavior on geometry shaders
constexpr std::tuple<const char*, const char*, u32> GetPrimitiveDescription(GLenum primitive_mode) {
switch (primitive_mode) {
@ -121,110 +152,142 @@ ProgramType GetProgramType(Maxwell::ShaderProgram program) {
return {};
}
/// Calculates the size of a program stream
std::size_t CalculateProgramSize(const GLShader::ProgramCode& program) {
constexpr std::size_t start_offset = 10;
// This is the encoded version of BRA that jumps to itself. All Nvidia
// shaders end with one.
constexpr u64 self_jumping_branch = 0xE2400FFFFF07000FULL;
constexpr u64 mask = 0xFFFFFFFFFF7FFFFFULL;
std::size_t offset = start_offset;
std::size_t size = start_offset * sizeof(u64);
while (offset < program.size()) {
const u64 instruction = program[offset];
if (!IsSchedInstruction(offset, start_offset)) {
if ((instruction & mask) == self_jumping_branch) {
// End on Maxwell's "nop" instruction
break;
}
if (instruction == 0) {
break;
}
}
size += sizeof(u64);
offset++;
}
// The last instruction is included in the program size
return std::min(size + sizeof(u64), program.size() * sizeof(u64));
}
/// Hashes one (or two) program streams
u64 GetUniqueIdentifier(ProgramType program_type, const ProgramCode& code,
const ProgramCode& code_b, std::size_t size_a = 0, std::size_t size_b = 0) {
if (size_a == 0) {
size_a = CalculateProgramSize(code);
}
u64 unique_identifier = Common::CityHash64(reinterpret_cast<const char*>(code.data()), size_a);
if (program_type != ProgramType::VertexA) {
return unique_identifier;
}
const ProgramCode& code_b) {
u64 unique_identifier = boost::hash_value(code);
if (program_type == ProgramType::VertexA) {
// VertexA programs include two programs
std::size_t seed = 0;
boost::hash_combine(seed, unique_identifier);
if (size_b == 0) {
size_b = CalculateProgramSize(code_b);
boost::hash_combine(unique_identifier, boost::hash_value(code_b));
}
const u64 identifier_b =
Common::CityHash64(reinterpret_cast<const char*>(code_b.data()), size_b);
boost::hash_combine(seed, identifier_b);
return static_cast<u64>(seed);
return unique_identifier;
}
/// Creates an unspecialized program from code streams
GLShader::ProgramResult CreateProgram(const Device& device, ProgramType program_type,
ProgramCode program_code, ProgramCode program_code_b) {
GLShader::ShaderSetup setup(program_code);
setup.program.size_a = CalculateProgramSize(program_code);
setup.program.size_b = 0;
if (program_type == ProgramType::VertexA) {
// VertexB is always enabled, so when VertexA is enabled, we have two vertex shaders.
// Conventional HW does not support this, so we combine VertexA and VertexB into one
// stage here.
setup.SetProgramB(program_code_b);
setup.program.size_b = CalculateProgramSize(program_code_b);
}
setup.program.unique_identifier = GetUniqueIdentifier(
program_type, program_code, program_code_b, setup.program.size_a, setup.program.size_b);
std::string GenerateGLSL(const Device& device, ProgramType program_type, const ShaderIR& ir,
const std::optional<ShaderIR>& ir_b) {
switch (program_type) {
case ProgramType::VertexA:
case ProgramType::VertexB:
return GLShader::GenerateVertexShader(device, setup);
return GLShader::GenerateVertexShader(device, ir, ir_b ? &*ir_b : nullptr);
case ProgramType::Geometry:
return GLShader::GenerateGeometryShader(device, setup);
return GLShader::GenerateGeometryShader(device, ir);
case ProgramType::Fragment:
return GLShader::GenerateFragmentShader(device, setup);
return GLShader::GenerateFragmentShader(device, ir);
case ProgramType::Compute:
return GLShader::GenerateComputeShader(device, setup);
return GLShader::GenerateComputeShader(device, ir);
default:
UNIMPLEMENTED_MSG("Unimplemented program_type={}", static_cast<u32>(program_type));
return {};
}
}
CachedProgram SpecializeShader(const std::string& code, const GLShader::ShaderEntries& entries,
ProgramType program_type, const ProgramVariant& variant,
constexpr const char* GetProgramTypeName(ProgramType program_type) {
switch (program_type) {
case ProgramType::VertexA:
case ProgramType::VertexB:
return "VS";
case ProgramType::TessellationControl:
return "TCS";
case ProgramType::TessellationEval:
return "TES";
case ProgramType::Geometry:
return "GS";
case ProgramType::Fragment:
return "FS";
case ProgramType::Compute:
return "CS";
}
return "UNK";
}
Tegra::Engines::ShaderType GetEnginesShaderType(ProgramType program_type) {
switch (program_type) {
case ProgramType::VertexA:
case ProgramType::VertexB:
return Tegra::Engines::ShaderType::Vertex;
case ProgramType::TessellationControl:
return Tegra::Engines::ShaderType::TesselationControl;
case ProgramType::TessellationEval:
return Tegra::Engines::ShaderType::TesselationEval;
case ProgramType::Geometry:
return Tegra::Engines::ShaderType::Geometry;
case ProgramType::Fragment:
return Tegra::Engines::ShaderType::Fragment;
case ProgramType::Compute:
return Tegra::Engines::ShaderType::Compute;
}
UNREACHABLE();
return {};
}
std::string GetShaderId(u64 unique_identifier, ProgramType program_type) {
return fmt::format("{}{:016X}", GetProgramTypeName(program_type), unique_identifier);
}
Tegra::Engines::ConstBufferEngineInterface& GetConstBufferEngineInterface(
Core::System& system, ProgramType program_type) {
if (program_type == ProgramType::Compute) {
return system.GPU().KeplerCompute();
} else {
return system.GPU().Maxwell3D();
}
}
std::unique_ptr<ConstBufferLocker> MakeLocker(Core::System& system, ProgramType program_type) {
return std::make_unique<ConstBufferLocker>(GetEnginesShaderType(program_type),
GetConstBufferEngineInterface(system, program_type));
}
void FillLocker(ConstBufferLocker& locker, const ShaderDiskCacheUsage& usage) {
for (const auto& key : usage.keys) {
const auto [buffer, offset] = key.first;
locker.InsertKey(buffer, offset, key.second);
}
for (const auto& [offset, sampler] : usage.bound_samplers) {
locker.InsertBoundSampler(offset, sampler);
}
for (const auto& [key, sampler] : usage.bindless_samplers) {
const auto [buffer, offset] = key;
locker.InsertBindlessSampler(buffer, offset, sampler);
}
}
CachedProgram BuildShader(const Device& device, u64 unique_identifier, ProgramType program_type,
const ProgramCode& program_code, const ProgramCode& program_code_b,
const ProgramVariant& variant, ConstBufferLocker& locker,
bool hint_retrievable = false) {
LOG_INFO(Render_OpenGL, "called. {}", GetShaderId(unique_identifier, program_type));
const bool is_compute = program_type == ProgramType::Compute;
const u32 main_offset = is_compute ? KERNEL_MAIN_OFFSET : STAGE_MAIN_OFFSET;
const ShaderIR ir(program_code, main_offset, COMPILER_SETTINGS, locker);
std::optional<ShaderIR> ir_b;
if (!program_code_b.empty()) {
ir_b.emplace(program_code_b, main_offset, COMPILER_SETTINGS, locker);
}
const auto entries = GLShader::GetEntries(ir);
auto base_bindings{variant.base_bindings};
const auto primitive_mode{variant.primitive_mode};
const auto texture_buffer_usage{variant.texture_buffer_usage};
std::string source = R"(#version 430 core
std::string source = fmt::format(R"(// {}
#version 430 core
#extension GL_ARB_separate_shader_objects : enable
#extension GL_ARB_shader_viewport_layer_array : enable
#extension GL_EXT_shader_image_load_formatted : enable
#extension GL_NV_gpu_shader5 : enable
#extension GL_NV_shader_thread_group : enable
#extension GL_NV_shader_thread_shuffle : enable
)";
if (program_type == ProgramType::Compute) {
)",
GetShaderId(unique_identifier, program_type));
if (is_compute) {
source += "#extension GL_ARB_compute_variable_group_size : require\n";
}
source += '\n';
if (program_type != ProgramType::Compute) {
if (!is_compute) {
source += fmt::format("#define EMULATION_UBO_BINDING {}\n", base_bindings.cbuf++);
}
@ -268,7 +331,7 @@ CachedProgram SpecializeShader(const std::string& code, const GLShader::ShaderEn
}
source += '\n';
source += code;
source += GenerateGLSL(device, program_type, ir, ir_b);
OGLShader shader;
shader.Create(source.c_str(), GetShaderType(program_type));
@ -278,85 +341,97 @@ CachedProgram SpecializeShader(const std::string& code, const GLShader::ShaderEn
return program;
}
std::set<GLenum> GetSupportedFormats() {
std::set<GLenum> supported_formats;
std::unordered_set<GLenum> GetSupportedFormats() {
GLint num_formats{};
glGetIntegerv(GL_NUM_PROGRAM_BINARY_FORMATS, &num_formats);
std::vector<GLint> formats(num_formats);
glGetIntegerv(GL_PROGRAM_BINARY_FORMATS, formats.data());
for (const GLint format : formats)
std::unordered_set<GLenum> supported_formats;
for (const GLint format : formats) {
supported_formats.insert(static_cast<GLenum>(format));
}
return supported_formats;
}
} // Anonymous namespace
CachedShader::CachedShader(const ShaderParameters& params, ProgramType program_type,
GLShader::ProgramResult result)
: RasterizerCacheObject{params.host_ptr}, cpu_addr{params.cpu_addr},
unique_identifier{params.unique_identifier}, program_type{program_type},
disk_cache{params.disk_cache}, precompiled_programs{params.precompiled_programs},
entries{result.second}, code{std::move(result.first)}, shader_length{entries.shader_length} {}
GLShader::ShaderEntries entries, ProgramCode program_code,
ProgramCode program_code_b)
: RasterizerCacheObject{params.host_ptr}, system{params.system},
disk_cache{params.disk_cache}, device{params.device}, cpu_addr{params.cpu_addr},
unique_identifier{params.unique_identifier}, program_type{program_type}, entries{entries},
program_code{std::move(program_code)}, program_code_b{std::move(program_code_b)} {
if (!params.precompiled_variants) {
return;
}
for (const auto& pair : *params.precompiled_variants) {
auto locker = MakeLocker(system, program_type);
const auto& usage = pair->first;
FillLocker(*locker, usage);
std::unique_ptr<LockerVariant>* locker_variant = nullptr;
const auto it =
std::find_if(locker_variants.begin(), locker_variants.end(), [&](const auto& variant) {
return variant->locker->HasEqualKeys(*locker);
});
if (it == locker_variants.end()) {
locker_variant = &locker_variants.emplace_back();
*locker_variant = std::make_unique<LockerVariant>();
locker_variant->get()->locker = std::move(locker);
} else {
locker_variant = &*it;
}
locker_variant->get()->programs.emplace(usage.variant, pair->second);
}
}
Shader CachedShader::CreateStageFromMemory(const ShaderParameters& params,
Maxwell::ShaderProgram program_type,
ProgramCode&& program_code,
ProgramCode&& program_code_b) {
const auto code_size{CalculateProgramSize(program_code)};
const auto code_size_b{CalculateProgramSize(program_code_b)};
auto result{
CreateProgram(params.device, GetProgramType(program_type), program_code, program_code_b)};
if (result.first.empty()) {
// TODO(Rodrigo): Unimplemented shader stages hit here, avoid using these for now
return {};
}
ProgramCode program_code, ProgramCode program_code_b) {
params.disk_cache.SaveRaw(ShaderDiskCacheRaw(
params.unique_identifier, GetProgramType(program_type),
static_cast<u32>(code_size / sizeof(u64)), static_cast<u32>(code_size_b / sizeof(u64)),
params.unique_identifier, GetProgramType(program_type), program_code, program_code_b));
ConstBufferLocker locker(GetEnginesShaderType(GetProgramType(program_type)));
const ShaderIR ir(program_code, STAGE_MAIN_OFFSET, COMPILER_SETTINGS, locker);
// TODO(Rodrigo): Handle VertexA shaders
// std::optional<ShaderIR> ir_b;
// if (!program_code_b.empty()) {
// ir_b.emplace(program_code_b, STAGE_MAIN_OFFSET);
// }
return std::shared_ptr<CachedShader>(
new CachedShader(params, GetProgramType(program_type), GLShader::GetEntries(ir),
std::move(program_code), std::move(program_code_b)));
return std::shared_ptr<CachedShader>(
new CachedShader(params, GetProgramType(program_type), std::move(result)));
}
Shader CachedShader::CreateStageFromCache(const ShaderParameters& params,
Maxwell::ShaderProgram program_type,
GLShader::ProgramResult result) {
return std::shared_ptr<CachedShader>(
new CachedShader(params, GetProgramType(program_type), std::move(result)));
Shader CachedShader::CreateKernelFromMemory(const ShaderParameters& params, ProgramCode code) {
params.disk_cache.SaveRaw(
ShaderDiskCacheRaw(params.unique_identifier, ProgramType::Compute, code));
ConstBufferLocker locker(Tegra::Engines::ShaderType::Compute);
const ShaderIR ir(code, KERNEL_MAIN_OFFSET, COMPILER_SETTINGS, locker);
return std::shared_ptr<CachedShader>(new CachedShader(
params, ProgramType::Compute, GLShader::GetEntries(ir), std::move(code), {}));
}
Shader CachedShader::CreateKernelFromMemory(const ShaderParameters& params, ProgramCode&& code) {
auto result{CreateProgram(params.device, ProgramType::Compute, code, {})};
const auto code_size{CalculateProgramSize(code)};
params.disk_cache.SaveRaw(ShaderDiskCacheRaw(params.unique_identifier, ProgramType::Compute,
static_cast<u32>(code_size / sizeof(u64)), 0,
std::move(code), {}));
return std::shared_ptr<CachedShader>(
new CachedShader(params, ProgramType::Compute, std::move(result)));
}
Shader CachedShader::CreateKernelFromCache(const ShaderParameters& params,
GLShader::ProgramResult result) {
return std::shared_ptr<CachedShader>(
new CachedShader(params, ProgramType::Compute, std::move(result)));
Shader CachedShader::CreateFromCache(const ShaderParameters& params,
const UnspecializedShader& unspecialized) {
return std::shared_ptr<CachedShader>(new CachedShader(params, unspecialized.program_type,
unspecialized.entries, unspecialized.code,
unspecialized.code_b));
}
std::tuple<GLuint, BaseBindings> CachedShader::GetProgramHandle(const ProgramVariant& variant) {
const auto [entry, is_cache_miss] = programs.try_emplace(variant);
UpdateVariant();
const auto [entry, is_cache_miss] = curr_variant->programs.try_emplace(variant);
auto& program = entry->second;
if (is_cache_miss) {
program = TryLoadProgram(variant);
if (!program) {
program = SpecializeShader(code, entries, program_type, variant);
disk_cache.SaveUsage(GetUsage(variant));
}
program = BuildShader(device, unique_identifier, program_type, program_code, program_code_b,
variant, *curr_variant->locker);
disk_cache.SaveUsage(GetUsage(variant, *curr_variant->locker));
LabelGLObject(GL_PROGRAM, program->handle, cpu_addr);
}
@ -372,18 +447,33 @@ std::tuple<GLuint, BaseBindings> CachedShader::GetProgramHandle(const ProgramVar
return {program->handle, base_bindings};
}
CachedProgram CachedShader::TryLoadProgram(const ProgramVariant& variant) const {
const auto found = precompiled_programs.find(GetUsage(variant));
if (found == precompiled_programs.end()) {
return {};
void CachedShader::UpdateVariant() {
if (curr_variant && !curr_variant->locker->IsConsistent()) {
curr_variant = nullptr;
}
if (!curr_variant) {
for (auto& variant : locker_variants) {
if (variant->locker->IsConsistent()) {
curr_variant = variant.get();
}
}
}
if (!curr_variant) {
auto& new_variant = locker_variants.emplace_back();
new_variant = std::make_unique<LockerVariant>();
new_variant->locker = MakeLocker(system, program_type);
curr_variant = new_variant.get();
}
return found->second;
}
ShaderDiskCacheUsage CachedShader::GetUsage(const ProgramVariant& variant) const {
ShaderDiskCacheUsage CachedShader::GetUsage(const ProgramVariant& variant,
const ConstBufferLocker& locker) const {
ShaderDiskCacheUsage usage;
usage.unique_identifier = unique_identifier;
usage.variant = variant;
usage.keys = locker.GetKeys();
usage.bound_samplers = locker.GetBoundSamplers();
usage.bindless_samplers = locker.GetBindlessSamplers();
return usage;
}
@ -399,18 +489,15 @@ void ShaderCacheOpenGL::LoadDiskCache(const std::atomic_bool& stop_loading,
return;
}
const auto [raws, shader_usages] = *transferable;
auto [decompiled, dumps] = disk_cache.LoadPrecompiled();
const auto supported_formats{GetSupportedFormats()};
const auto unspecialized_shaders{
GenerateUnspecializedShaders(stop_loading, callback, raws, decompiled)};
if (stop_loading) {
if (!GenerateUnspecializedShaders(stop_loading, callback, raws) || stop_loading) {
return;
}
// Track if precompiled cache was altered during loading to know if we have to serialize the
// virtual precompiled cache file back to the hard drive
const auto dumps = disk_cache.LoadPrecompiled();
const auto supported_formats = GetSupportedFormats();
// Track if precompiled cache was altered during loading to know if we have to
// serialize the virtual precompiled cache file back to the hard drive
bool precompiled_cache_altered = false;
// Inform the frontend about shader build initialization
@ -433,9 +520,6 @@ void ShaderCacheOpenGL::LoadDiskCache(const std::atomic_bool& stop_loading,
return;
}
const auto& usage{shader_usages[i]};
LOG_INFO(Render_OpenGL, "Building shader {:016x} (index {} of {})",
usage.unique_identifier, i, shader_usages.size());
const auto& unspecialized{unspecialized_shaders.at(usage.unique_identifier)};
const auto dump{dumps.find(usage)};
@ -449,21 +533,28 @@ void ShaderCacheOpenGL::LoadDiskCache(const std::atomic_bool& stop_loading,
}
}
if (!shader) {
shader = SpecializeShader(unspecialized.code, unspecialized.entries,
unspecialized.program_type, usage.variant, true);
auto locker{MakeLocker(system, unspecialized.program_type)};
FillLocker(*locker, usage);
shader = BuildShader(device, usage.unique_identifier, unspecialized.program_type,
unspecialized.code, unspecialized.code_b, usage.variant,
*locker, true);
}
std::scoped_lock lock(mutex);
std::scoped_lock lock{mutex};
if (callback) {
callback(VideoCore::LoadCallbackStage::Build, ++built_shaders,
shader_usages.size());
}
precompiled_programs.emplace(usage, std::move(shader));
// TODO(Rodrigo): Is there a better way to do this?
precompiled_variants[usage.unique_identifier].push_back(
precompiled_programs.find(usage));
}
};
const auto num_workers{static_cast<std::size_t>(std::thread::hardware_concurrency() + 1)};
const auto num_workers{static_cast<std::size_t>(std::thread::hardware_concurrency() + 1ULL)};
const std::size_t bucket_size{shader_usages.size() / num_workers};
std::vector<std::unique_ptr<Core::Frontend::GraphicsContext>> contexts(num_workers);
std::vector<std::thread> threads(num_workers);
@ -483,7 +574,6 @@ void ShaderCacheOpenGL::LoadDiskCache(const std::atomic_bool& stop_loading,
if (compilation_failed) {
// Invalidate the precompiled cache if a shader dumped shader was rejected
disk_cache.InvalidatePrecompiled();
dumps.clear();
precompiled_cache_altered = true;
return;
}
@ -491,8 +581,8 @@ void ShaderCacheOpenGL::LoadDiskCache(const std::atomic_bool& stop_loading,
return;
}
// TODO(Rodrigo): Do state tracking for transferable shaders and do a dummy draw before
// precompiling them
// TODO(Rodrigo): Do state tracking for transferable shaders and do a dummy draw
// before precompiling them
for (std::size_t i = 0; i < shader_usages.size(); ++i) {
const auto& usage{shader_usages[i]};
@ -508,9 +598,13 @@ void ShaderCacheOpenGL::LoadDiskCache(const std::atomic_bool& stop_loading,
}
}
CachedProgram ShaderCacheOpenGL::GeneratePrecompiledProgram(
const ShaderDiskCacheDump& dump, const std::set<GLenum>& supported_formats) {
const PrecompiledVariants* ShaderCacheOpenGL::GetPrecompiledVariants(u64 unique_identifier) const {
const auto it = precompiled_variants.find(unique_identifier);
return it == precompiled_variants.end() ? nullptr : &it->second;
}
CachedProgram ShaderCacheOpenGL::GeneratePrecompiledProgram(
const ShaderDiskCacheDump& dump, const std::unordered_set<GLenum>& supported_formats) {
if (supported_formats.find(dump.binary_format) == supported_formats.end()) {
LOG_INFO(Render_OpenGL, "Precompiled cache entry with unsupported format - removing");
return {};
@ -532,56 +626,52 @@ CachedProgram ShaderCacheOpenGL::GeneratePrecompiledProgram(
return shader;
}
std::unordered_map<u64, UnspecializedShader> ShaderCacheOpenGL::GenerateUnspecializedShaders(
bool ShaderCacheOpenGL::GenerateUnspecializedShaders(
const std::atomic_bool& stop_loading, const VideoCore::DiskResourceLoadCallback& callback,
const std::vector<ShaderDiskCacheRaw>& raws,
const std::unordered_map<u64, ShaderDiskCacheDecompiled>& decompiled) {
std::unordered_map<u64, UnspecializedShader> unspecialized;
const std::vector<ShaderDiskCacheRaw>& raws) {
if (callback) {
callback(VideoCore::LoadCallbackStage::Decompile, 0, raws.size());
}
for (std::size_t i = 0; i < raws.size(); ++i) {
if (stop_loading) {
return {};
return false;
}
const auto& raw{raws[i]};
const u64 unique_identifier{raw.GetUniqueIdentifier()};
const u64 calculated_hash{
GetUniqueIdentifier(raw.GetProgramType(), raw.GetProgramCode(), raw.GetProgramCodeB())};
if (unique_identifier != calculated_hash) {
LOG_ERROR(
Render_OpenGL,
"Invalid hash in entry={:016x} (obtained hash={:016x}) - removing shader cache",
LOG_ERROR(Render_OpenGL,
"Invalid hash in entry={:016x} (obtained hash={:016x}) - "
"removing shader cache",
raw.GetUniqueIdentifier(), calculated_hash);
disk_cache.InvalidateTransferable();
return {};
return false;
}
GLShader::ProgramResult result;
if (const auto it = decompiled.find(unique_identifier); it != decompiled.end()) {
// If it's stored in the precompiled file, avoid decompiling it here
const auto& stored_decompiled{it->second};
result = {stored_decompiled.code, stored_decompiled.entries};
} else {
// Otherwise decompile the shader at boot and save the result to the decompiled file
result = CreateProgram(device, raw.GetProgramType(), raw.GetProgramCode(),
raw.GetProgramCodeB());
disk_cache.SaveDecompiled(unique_identifier, result.first, result.second);
}
const u32 main_offset =
raw.GetProgramType() == ProgramType::Compute ? KERNEL_MAIN_OFFSET : STAGE_MAIN_OFFSET;
ConstBufferLocker locker(GetEnginesShaderType(raw.GetProgramType()));
const ShaderIR ir(raw.GetProgramCode(), main_offset, COMPILER_SETTINGS, locker);
// TODO(Rodrigo): Handle VertexA shaders
// std::optional<ShaderIR> ir_b;
// if (raw.HasProgramA()) {
// ir_b.emplace(raw.GetProgramCodeB(), main_offset);
// }
precompiled_shaders.insert({unique_identifier, result});
unspecialized.insert(
{raw.GetUniqueIdentifier(),
{std::move(result.first), std::move(result.second), raw.GetProgramType()}});
UnspecializedShader unspecialized;
unspecialized.entries = GLShader::GetEntries(ir);
unspecialized.program_type = raw.GetProgramType();
unspecialized.code = raw.GetProgramCode();
unspecialized.code_b = raw.GetProgramCodeB();
unspecialized_shaders.emplace(raw.GetUniqueIdentifier(), unspecialized);
if (callback) {
callback(VideoCore::LoadCallbackStage::Decompile, i, raws.size());
}
}
return unspecialized;
return true;
}
Shader ShaderCacheOpenGL::GetStageProgram(Maxwell::ShaderProgram program) {
@ -590,37 +680,35 @@ Shader ShaderCacheOpenGL::GetStageProgram(Maxwell::ShaderProgram program) {
}
auto& memory_manager{system.GPU().MemoryManager()};
const GPUVAddr program_addr{GetShaderAddress(system, program)};
const GPUVAddr address{GetShaderAddress(system, program)};
// Look up shader in the cache based on address
const auto host_ptr{memory_manager.GetPointer(program_addr)};
const auto host_ptr{memory_manager.GetPointer(address)};
Shader shader{TryGet(host_ptr)};
if (shader) {
return last_shaders[static_cast<std::size_t>(program)] = shader;
}
// No shader found - create a new one
ProgramCode program_code{GetShaderCode(memory_manager, program_addr, host_ptr)};
ProgramCode program_code_b;
const bool is_program_a{program == Maxwell::ShaderProgram::VertexA};
if (is_program_a) {
const GPUVAddr program_addr_b{GetShaderAddress(system, Maxwell::ShaderProgram::VertexB)};
program_code_b = GetShaderCode(memory_manager, program_addr_b,
memory_manager.GetPointer(program_addr_b));
ProgramCode code{GetShaderCode(memory_manager, address, host_ptr)};
ProgramCode code_b;
if (program == Maxwell::ShaderProgram::VertexA) {
const GPUVAddr address_b{GetShaderAddress(system, Maxwell::ShaderProgram::VertexB)};
code_b = GetShaderCode(memory_manager, address_b, memory_manager.GetPointer(address_b));
}
const auto unique_identifier =
GetUniqueIdentifier(GetProgramType(program), program_code, program_code_b);
const auto cpu_addr{*memory_manager.GpuToCpuAddress(program_addr)};
const ShaderParameters params{disk_cache, precompiled_programs, device, cpu_addr,
host_ptr, unique_identifier};
const auto unique_identifier = GetUniqueIdentifier(GetProgramType(program), code, code_b);
const auto precompiled_variants = GetPrecompiledVariants(unique_identifier);
const auto cpu_addr{*memory_manager.GpuToCpuAddress(address)};
const ShaderParameters params{system, disk_cache, precompiled_variants, device,
cpu_addr, host_ptr, unique_identifier};
const auto found = precompiled_shaders.find(unique_identifier);
if (found == precompiled_shaders.end()) {
shader = CachedShader::CreateStageFromMemory(params, program, std::move(program_code),
std::move(program_code_b));
const auto found = unspecialized_shaders.find(unique_identifier);
if (found == unspecialized_shaders.end()) {
shader = CachedShader::CreateStageFromMemory(params, program, std::move(code),
std::move(code_b));
} else {
shader = CachedShader::CreateStageFromCache(params, program, found->second);
shader = CachedShader::CreateFromCache(params, found->second);
}
Register(shader);
@ -638,15 +726,16 @@ Shader ShaderCacheOpenGL::GetComputeKernel(GPUVAddr code_addr) {
// No kernel found - create a new one
auto code{GetShaderCode(memory_manager, code_addr, host_ptr)};
const auto unique_identifier{GetUniqueIdentifier(ProgramType::Compute, code, {})};
const auto precompiled_variants = GetPrecompiledVariants(unique_identifier);
const auto cpu_addr{*memory_manager.GpuToCpuAddress(code_addr)};
const ShaderParameters params{disk_cache, precompiled_programs, device, cpu_addr,
host_ptr, unique_identifier};
const ShaderParameters params{system, disk_cache, precompiled_variants, device,
cpu_addr, host_ptr, unique_identifier};
const auto found = precompiled_shaders.find(unique_identifier);
if (found == precompiled_shaders.end()) {
const auto found = unspecialized_shaders.find(unique_identifier);
if (found == unspecialized_shaders.end()) {
kernel = CachedShader::CreateKernelFromMemory(params, std::move(code));
} else {
kernel = CachedShader::CreateKernelFromCache(params, found->second);
kernel = CachedShader::CreateFromCache(params, found->second);
}
Register(kernel);

View file

@ -8,9 +8,10 @@
#include <atomic>
#include <bitset>
#include <memory>
#include <set>
#include <string>
#include <tuple>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include <glad/glad.h>
@ -20,6 +21,8 @@
#include "video_core/renderer_opengl/gl_resource_manager.h"
#include "video_core/renderer_opengl/gl_shader_decompiler.h"
#include "video_core/renderer_opengl/gl_shader_disk_cache.h"
#include "video_core/shader/const_buffer_locker.h"
#include "video_core/shader/shader_ir.h"
namespace Core {
class System;
@ -40,11 +43,19 @@ using Shader = std::shared_ptr<CachedShader>;
using CachedProgram = std::shared_ptr<OGLProgram>;
using Maxwell = Tegra::Engines::Maxwell3D::Regs;
using PrecompiledPrograms = std::unordered_map<ShaderDiskCacheUsage, CachedProgram>;
using PrecompiledShaders = std::unordered_map<u64, GLShader::ProgramResult>;
using PrecompiledVariants = std::vector<PrecompiledPrograms::iterator>;
struct UnspecializedShader {
GLShader::ShaderEntries entries;
ProgramType program_type;
ProgramCode code;
ProgramCode code_b;
};
struct ShaderParameters {
Core::System& system;
ShaderDiskCacheOpenGL& disk_cache;
const PrecompiledPrograms& precompiled_programs;
const PrecompiledVariants* precompiled_variants;
const Device& device;
VAddr cpu_addr;
u8* host_ptr;
@ -55,23 +66,18 @@ class CachedShader final : public RasterizerCacheObject {
public:
static Shader CreateStageFromMemory(const ShaderParameters& params,
Maxwell::ShaderProgram program_type,
ProgramCode&& program_code, ProgramCode&& program_code_b);
ProgramCode program_code, ProgramCode program_code_b);
static Shader CreateKernelFromMemory(const ShaderParameters& params, ProgramCode code);
static Shader CreateStageFromCache(const ShaderParameters& params,
Maxwell::ShaderProgram program_type,
GLShader::ProgramResult result);
static Shader CreateKernelFromMemory(const ShaderParameters& params, ProgramCode&& code);
static Shader CreateKernelFromCache(const ShaderParameters& params,
GLShader::ProgramResult result);
static Shader CreateFromCache(const ShaderParameters& params,
const UnspecializedShader& unspecialized);
VAddr GetCpuAddr() const override {
return cpu_addr;
}
std::size_t GetSizeInBytes() const override {
return shader_length;
return program_code.size() * sizeof(u64);
}
/// Gets the shader entries for the shader
@ -83,24 +89,36 @@ public:
std::tuple<GLuint, BaseBindings> GetProgramHandle(const ProgramVariant& variant);
private:
struct LockerVariant {
std::unique_ptr<VideoCommon::Shader::ConstBufferLocker> locker;
std::unordered_map<ProgramVariant, CachedProgram> programs;
};
explicit CachedShader(const ShaderParameters& params, ProgramType program_type,
GLShader::ProgramResult result);
GLShader::ShaderEntries entries, ProgramCode program_code,
ProgramCode program_code_b);
CachedProgram TryLoadProgram(const ProgramVariant& variant) const;
void UpdateVariant();
ShaderDiskCacheUsage GetUsage(const ProgramVariant& variant) const;
ShaderDiskCacheUsage GetUsage(const ProgramVariant& variant,
const VideoCommon::Shader::ConstBufferLocker& locker) const;
Core::System& system;
ShaderDiskCacheOpenGL& disk_cache;
const Device& device;
VAddr cpu_addr{};
u64 unique_identifier{};
ProgramType program_type{};
ShaderDiskCacheOpenGL& disk_cache;
const PrecompiledPrograms& precompiled_programs;
GLShader::ShaderEntries entries;
std::string code;
std::size_t shader_length{};
std::unordered_map<ProgramVariant, CachedProgram> programs;
ProgramCode program_code;
ProgramCode program_code_b;
LockerVariant* curr_variant = nullptr;
std::vector<std::unique_ptr<LockerVariant>> locker_variants;
};
class ShaderCacheOpenGL final : public RasterizerCache<Shader> {
@ -123,21 +141,26 @@ protected:
void FlushObjectInner(const Shader& object) override {}
private:
std::unordered_map<u64, UnspecializedShader> GenerateUnspecializedShaders(
const std::atomic_bool& stop_loading, const VideoCore::DiskResourceLoadCallback& callback,
const std::vector<ShaderDiskCacheRaw>& raws,
const std::unordered_map<u64, ShaderDiskCacheDecompiled>& decompiled);
bool GenerateUnspecializedShaders(const std::atomic_bool& stop_loading,
const VideoCore::DiskResourceLoadCallback& callback,
const std::vector<ShaderDiskCacheRaw>& raws);
CachedProgram GeneratePrecompiledProgram(const ShaderDiskCacheDump& dump,
const std::set<GLenum>& supported_formats);
const std::unordered_set<GLenum>& supported_formats);
const PrecompiledVariants* GetPrecompiledVariants(u64 unique_identifier) const;
Core::System& system;
Core::Frontend::EmuWindow& emu_window;
const Device& device;
ShaderDiskCacheOpenGL disk_cache;
PrecompiledShaders precompiled_shaders;
PrecompiledPrograms precompiled_programs;
std::unordered_map<u64, PrecompiledVariants> precompiled_variants;
std::unordered_map<u64, UnspecializedShader> unspecialized_shaders;
std::array<Shader, Maxwell::MaxShaderProgram> last_shaders;
};

View file

@ -415,27 +415,6 @@ public:
return code.GetResult();
}
ShaderEntries GetShaderEntries() const {
ShaderEntries entries;
for (const auto& cbuf : ir.GetConstantBuffers()) {
entries.const_buffers.emplace_back(cbuf.second.GetMaxOffset(), cbuf.second.IsIndirect(),
cbuf.first);
}
for (const auto& sampler : ir.GetSamplers()) {
entries.samplers.emplace_back(sampler);
}
for (const auto& [offset, image] : ir.GetImages()) {
entries.images.emplace_back(image);
}
for (const auto& [base, usage] : ir.GetGlobalMemory()) {
entries.global_memory_entries.emplace_back(base.cbuf_index, base.cbuf_offset,
usage.is_read, usage.is_written);
}
entries.clip_distances = ir.GetClipDistances();
entries.shader_length = ir.GetLength();
return entries;
}
private:
friend class ASTDecompiler;
friend class ExprDecompiler;
@ -2338,6 +2317,11 @@ public:
inner += expr.value ? "true" : "false";
}
void operator()(VideoCommon::Shader::ExprGprEqual& expr) {
inner +=
"( ftou(" + decomp.GetRegister(expr.gpr) + ") == " + std::to_string(expr.value) + ')';
}
const std::string& GetResult() const {
return inner;
}
@ -2476,25 +2460,46 @@ void GLSLDecompiler::DecompileAST() {
} // Anonymous namespace
std::string GetCommonDeclarations() {
return fmt::format(
"#define ftoi floatBitsToInt\n"
"#define ftou floatBitsToUint\n"
"#define itof intBitsToFloat\n"
"#define utof uintBitsToFloat\n\n"
"bvec2 HalfFloatNanComparison(bvec2 comparison, vec2 pair1, vec2 pair2) {{\n"
" bvec2 is_nan1 = isnan(pair1);\n"
" bvec2 is_nan2 = isnan(pair2);\n"
" return bvec2(comparison.x || is_nan1.x || is_nan2.x, comparison.y || is_nan1.y || "
"is_nan2.y);\n"
"}}\n\n");
ShaderEntries GetEntries(const VideoCommon::Shader::ShaderIR& ir) {
ShaderEntries entries;
for (const auto& cbuf : ir.GetConstantBuffers()) {
entries.const_buffers.emplace_back(cbuf.second.GetMaxOffset(), cbuf.second.IsIndirect(),
cbuf.first);
}
for (const auto& sampler : ir.GetSamplers()) {
entries.samplers.emplace_back(sampler);
}
for (const auto& [offset, image] : ir.GetImages()) {
entries.images.emplace_back(image);
}
for (const auto& [base, usage] : ir.GetGlobalMemory()) {
entries.global_memory_entries.emplace_back(base.cbuf_index, base.cbuf_offset, usage.is_read,
usage.is_written);
}
entries.clip_distances = ir.GetClipDistances();
entries.shader_length = ir.GetLength();
return entries;
}
ProgramResult Decompile(const Device& device, const ShaderIR& ir, ProgramType stage,
std::string GetCommonDeclarations() {
return R"(#define ftoi floatBitsToInt
#define ftou floatBitsToUint
#define itof intBitsToFloat
#define utof uintBitsToFloat
bvec2 HalfFloatNanComparison(bvec2 comparison, vec2 pair1, vec2 pair2) {
bvec2 is_nan1 = isnan(pair1);
bvec2 is_nan2 = isnan(pair2);
return bvec2(comparison.x || is_nan1.x || is_nan2.x, comparison.y || is_nan1.y || is_nan2.y);
}
)";
}
std::string Decompile(const Device& device, const ShaderIR& ir, ProgramType stage,
const std::string& suffix) {
GLSLDecompiler decompiler(device, ir, stage, suffix);
decompiler.Decompile();
return {decompiler.GetResult(), decompiler.GetShaderEntries()};
return decompiler.GetResult();
}
} // namespace OpenGL::GLShader

View file

@ -34,10 +34,7 @@ enum class ProgramType : u32 {
namespace OpenGL::GLShader {
struct ShaderEntries;
using Maxwell = Tegra::Engines::Maxwell3D::Regs;
using ProgramResult = std::pair<std::string, ShaderEntries>;
using SamplerEntry = VideoCommon::Shader::Sampler;
using ImageEntry = VideoCommon::Shader::Image;
@ -93,9 +90,11 @@ struct ShaderEntries {
std::size_t shader_length{};
};
ShaderEntries GetEntries(const VideoCommon::Shader::ShaderIR& ir);
std::string GetCommonDeclarations();
ProgramResult Decompile(const Device& device, const VideoCommon::Shader::ShaderIR& ir,
std::string Decompile(const Device& device, const VideoCommon::Shader::ShaderIR& ir,
ProgramType stage, const std::string& suffix);
} // namespace OpenGL::GLShader

View file

@ -22,6 +22,29 @@
namespace OpenGL {
using VideoCommon::Shader::BindlessSamplerMap;
using VideoCommon::Shader::BoundSamplerMap;
using VideoCommon::Shader::KeyMap;
namespace {
struct ConstBufferKey {
u32 cbuf;
u32 offset;
u32 value;
};
struct BoundSamplerKey {
u32 offset;
Tegra::Engines::SamplerDescriptor sampler;
};
struct BindlessSamplerKey {
u32 cbuf;
u32 offset;
Tegra::Engines::SamplerDescriptor sampler;
};
using ShaderCacheVersionHash = std::array<u8, 64>;
enum class TransferableEntryKind : u32 {
@ -29,18 +52,10 @@ enum class TransferableEntryKind : u32 {
Usage,
};
enum class PrecompiledEntryKind : u32 {
Decompiled,
Dump,
};
constexpr u32 NativeVersion = 4;
constexpr u32 NativeVersion = 5;
// Making sure sizes doesn't change by accident
static_assert(sizeof(BaseBindings) == 16);
static_assert(sizeof(ShaderDiskCacheUsage) == 40);
namespace {
ShaderCacheVersionHash GetShaderCacheVersionHash() {
ShaderCacheVersionHash hash{};
@ -49,13 +64,11 @@ ShaderCacheVersionHash GetShaderCacheVersionHash() {
return hash;
}
} // namespace
} // Anonymous namespace
ShaderDiskCacheRaw::ShaderDiskCacheRaw(u64 unique_identifier, ProgramType program_type,
u32 program_code_size, u32 program_code_size_b,
ProgramCode program_code, ProgramCode program_code_b)
: unique_identifier{unique_identifier}, program_type{program_type},
program_code_size{program_code_size}, program_code_size_b{program_code_size_b},
program_code{std::move(program_code)}, program_code_b{std::move(program_code_b)} {}
ShaderDiskCacheRaw::ShaderDiskCacheRaw() = default;
@ -90,15 +103,16 @@ bool ShaderDiskCacheRaw::Load(FileUtil::IOFile& file) {
bool ShaderDiskCacheRaw::Save(FileUtil::IOFile& file) const {
if (file.WriteObject(unique_identifier) != 1 ||
file.WriteObject(static_cast<u32>(program_type)) != 1 ||
file.WriteObject(program_code_size) != 1 || file.WriteObject(program_code_size_b) != 1) {
file.WriteObject(static_cast<u32>(program_code.size())) != 1 ||
file.WriteObject(static_cast<u32>(program_code_b.size())) != 1) {
return false;
}
if (file.WriteArray(program_code.data(), program_code_size) != program_code_size)
if (file.WriteArray(program_code.data(), program_code.size()) != program_code.size())
return false;
if (HasProgramA() &&
file.WriteArray(program_code_b.data(), program_code_size_b) != program_code_size_b) {
file.WriteArray(program_code_b.data(), program_code_b.size()) != program_code_b.size()) {
return false;
}
return true;
@ -127,13 +141,13 @@ ShaderDiskCacheOpenGL::LoadTransferable() {
u32 version{};
if (file.ReadBytes(&version, sizeof(version)) != sizeof(version)) {
LOG_ERROR(Render_OpenGL,
"Failed to get transferable cache version for title id={} - skipping",
"Failed to get transferable cache version for title id={}, skipping",
GetTitleID());
return {};
}
if (version < NativeVersion) {
LOG_INFO(Render_OpenGL, "Transferable shader cache is old - removing");
LOG_INFO(Render_OpenGL, "Transferable shader cache is old, removing");
file.Close();
InvalidateTransferable();
is_usable = true;
@ -141,17 +155,18 @@ ShaderDiskCacheOpenGL::LoadTransferable() {
}
if (version > NativeVersion) {
LOG_WARNING(Render_OpenGL, "Transferable shader cache was generated with a newer version "
"of the emulator - skipping");
"of the emulator, skipping");
return {};
}
// Version is valid, load the shaders
constexpr const char error_loading[] = "Failed to load transferable raw entry, skipping";
std::vector<ShaderDiskCacheRaw> raws;
std::vector<ShaderDiskCacheUsage> usages;
while (file.Tell() < file.GetSize()) {
TransferableEntryKind kind{};
if (file.ReadBytes(&kind, sizeof(u32)) != sizeof(u32)) {
LOG_ERROR(Render_OpenGL, "Failed to read transferable file - skipping");
LOG_ERROR(Render_OpenGL, "Failed to read transferable file, skipping");
return {};
}
@ -159,7 +174,7 @@ ShaderDiskCacheOpenGL::LoadTransferable() {
case TransferableEntryKind::Raw: {
ShaderDiskCacheRaw entry;
if (!entry.Load(file)) {
LOG_ERROR(Render_OpenGL, "Failed to load transferable raw entry - skipping");
LOG_ERROR(Render_OpenGL, error_loading);
return {};
}
transferable.insert({entry.GetUniqueIdentifier(), {}});
@ -167,16 +182,45 @@ ShaderDiskCacheOpenGL::LoadTransferable() {
break;
}
case TransferableEntryKind::Usage: {
ShaderDiskCacheUsage usage{};
if (file.ReadBytes(&usage, sizeof(usage)) != sizeof(usage)) {
LOG_ERROR(Render_OpenGL, "Failed to load transferable usage entry - skipping");
ShaderDiskCacheUsage usage;
u32 num_keys{};
u32 num_bound_samplers{};
u32 num_bindless_samplers{};
if (file.ReadArray(&usage.unique_identifier, 1) != 1 ||
file.ReadArray(&usage.variant, 1) != 1 || file.ReadArray(&num_keys, 1) != 1 ||
file.ReadArray(&num_bound_samplers, 1) != 1 ||
file.ReadArray(&num_bindless_samplers, 1) != 1) {
LOG_ERROR(Render_OpenGL, error_loading);
return {};
}
std::vector<ConstBufferKey> keys(num_keys);
std::vector<BoundSamplerKey> bound_samplers(num_bound_samplers);
std::vector<BindlessSamplerKey> bindless_samplers(num_bindless_samplers);
if (file.ReadArray(keys.data(), keys.size()) != keys.size() ||
file.ReadArray(bound_samplers.data(), bound_samplers.size()) !=
bound_samplers.size() ||
file.ReadArray(bindless_samplers.data(), bindless_samplers.size()) !=
bindless_samplers.size()) {
LOG_ERROR(Render_OpenGL, error_loading);
return {};
}
for (const auto& key : keys) {
usage.keys.insert({{key.cbuf, key.offset}, key.value});
}
for (const auto& key : bound_samplers) {
usage.bound_samplers.emplace(key.offset, key.sampler);
}
for (const auto& key : bindless_samplers) {
usage.bindless_samplers.insert({{key.cbuf, key.offset}, key.sampler});
}
usages.push_back(std::move(usage));
break;
}
default:
LOG_ERROR(Render_OpenGL, "Unknown transferable shader cache entry kind={} - skipping",
LOG_ERROR(Render_OpenGL, "Unknown transferable shader cache entry kind={}, skipping",
static_cast<u32>(kind));
return {};
}
@ -186,13 +230,14 @@ ShaderDiskCacheOpenGL::LoadTransferable() {
return {{std::move(raws), std::move(usages)}};
}
std::pair<std::unordered_map<u64, ShaderDiskCacheDecompiled>, ShaderDumpsMap>
std::unordered_map<ShaderDiskCacheUsage, ShaderDiskCacheDump>
ShaderDiskCacheOpenGL::LoadPrecompiled() {
if (!is_usable) {
return {};
}
FileUtil::IOFile file(GetPrecompiledPath(), "rb");
std::string path = GetPrecompiledPath();
FileUtil::IOFile file(path, "rb");
if (!file.IsOpen()) {
LOG_INFO(Render_OpenGL, "No precompiled shader cache found for game with title id={}",
GetTitleID());
@ -202,7 +247,7 @@ ShaderDiskCacheOpenGL::LoadPrecompiled() {
const auto result = LoadPrecompiledFile(file);
if (!result) {
LOG_INFO(Render_OpenGL,
"Failed to load precompiled cache for game with title id={} - removing",
"Failed to load precompiled cache for game with title id={}, removing",
GetTitleID());
file.Close();
InvalidatePrecompiled();
@ -211,7 +256,7 @@ ShaderDiskCacheOpenGL::LoadPrecompiled() {
return *result;
}
std::optional<std::pair<std::unordered_map<u64, ShaderDiskCacheDecompiled>, ShaderDumpsMap>>
std::optional<std::unordered_map<ShaderDiskCacheUsage, ShaderDiskCacheDump>>
ShaderDiskCacheOpenGL::LoadPrecompiledFile(FileUtil::IOFile& file) {
// Read compressed file from disk and decompress to virtual precompiled cache file
std::vector<u8> compressed(file.GetSize());
@ -231,33 +276,37 @@ ShaderDiskCacheOpenGL::LoadPrecompiledFile(FileUtil::IOFile& file) {
return {};
}
std::unordered_map<u64, ShaderDiskCacheDecompiled> decompiled;
ShaderDumpsMap dumps;
while (precompiled_cache_virtual_file_offset < precompiled_cache_virtual_file.GetSize()) {
PrecompiledEntryKind kind{};
if (!LoadObjectFromPrecompiled(kind)) {
return {};
}
switch (kind) {
case PrecompiledEntryKind::Decompiled: {
u64 unique_identifier{};
if (!LoadObjectFromPrecompiled(unique_identifier)) {
return {};
}
auto entry = LoadDecompiledEntry();
if (!entry) {
return {};
}
decompiled.insert({unique_identifier, std::move(*entry)});
break;
}
case PrecompiledEntryKind::Dump: {
u32 num_keys{};
u32 num_bound_samplers{};
u32 num_bindless_samplers{};
ShaderDiskCacheUsage usage;
if (!LoadObjectFromPrecompiled(usage)) {
if (!LoadObjectFromPrecompiled(usage.unique_identifier) ||
!LoadObjectFromPrecompiled(usage.variant) || !LoadObjectFromPrecompiled(num_keys) ||
!LoadObjectFromPrecompiled(num_bound_samplers) ||
!LoadObjectFromPrecompiled(num_bindless_samplers)) {
return {};
}
std::vector<ConstBufferKey> keys(num_keys);
std::vector<BoundSamplerKey> bound_samplers(num_bound_samplers);
std::vector<BindlessSamplerKey> bindless_samplers(num_bindless_samplers);
if (!LoadArrayFromPrecompiled(keys.data(), keys.size()) ||
!LoadArrayFromPrecompiled(bound_samplers.data(), bound_samplers.size()) !=
bound_samplers.size() ||
!LoadArrayFromPrecompiled(bindless_samplers.data(), bindless_samplers.size()) !=
bindless_samplers.size()) {
return {};
}
for (const auto& key : keys) {
usage.keys.insert({{key.cbuf, key.offset}, key.value});
}
for (const auto& key : bound_samplers) {
usage.bound_samplers.emplace(key.offset, key.sampler);
}
for (const auto& key : bindless_samplers) {
usage.bindless_samplers.insert({{key.cbuf, key.offset}, key.sampler});
}
ShaderDiskCacheDump dump;
if (!LoadObjectFromPrecompiled(dump.binary_format)) {
@ -274,195 +323,9 @@ ShaderDiskCacheOpenGL::LoadPrecompiledFile(FileUtil::IOFile& file) {
return {};
}
dumps.insert({usage, dump});
break;
dumps.emplace(std::move(usage), dump);
}
default:
return {};
}
}
return {{decompiled, dumps}};
}
std::optional<ShaderDiskCacheDecompiled> ShaderDiskCacheOpenGL::LoadDecompiledEntry() {
u32 code_size{};
if (!LoadObjectFromPrecompiled(code_size)) {
return {};
}
std::string code(code_size, '\0');
if (!LoadArrayFromPrecompiled(code.data(), code.size())) {
return {};
}
ShaderDiskCacheDecompiled entry;
entry.code = std::move(code);
u32 const_buffers_count{};
if (!LoadObjectFromPrecompiled(const_buffers_count)) {
return {};
}
for (u32 i = 0; i < const_buffers_count; ++i) {
u32 max_offset{};
u32 index{};
bool is_indirect{};
if (!LoadObjectFromPrecompiled(max_offset) || !LoadObjectFromPrecompiled(index) ||
!LoadObjectFromPrecompiled(is_indirect)) {
return {};
}
entry.entries.const_buffers.emplace_back(max_offset, is_indirect, index);
}
u32 samplers_count{};
if (!LoadObjectFromPrecompiled(samplers_count)) {
return {};
}
for (u32 i = 0; i < samplers_count; ++i) {
u64 offset{};
u64 index{};
u32 type{};
bool is_array{};
bool is_shadow{};
bool is_bindless{};
if (!LoadObjectFromPrecompiled(offset) || !LoadObjectFromPrecompiled(index) ||
!LoadObjectFromPrecompiled(type) || !LoadObjectFromPrecompiled(is_array) ||
!LoadObjectFromPrecompiled(is_shadow) || !LoadObjectFromPrecompiled(is_bindless)) {
return {};
}
entry.entries.samplers.emplace_back(
static_cast<std::size_t>(offset), static_cast<std::size_t>(index),
static_cast<Tegra::Shader::TextureType>(type), is_array, is_shadow, is_bindless);
}
u32 images_count{};
if (!LoadObjectFromPrecompiled(images_count)) {
return {};
}
for (u32 i = 0; i < images_count; ++i) {
u64 offset{};
u64 index{};
u32 type{};
u8 is_bindless{};
u8 is_written{};
u8 is_read{};
u8 is_atomic{};
if (!LoadObjectFromPrecompiled(offset) || !LoadObjectFromPrecompiled(index) ||
!LoadObjectFromPrecompiled(type) || !LoadObjectFromPrecompiled(is_bindless) ||
!LoadObjectFromPrecompiled(is_written) || !LoadObjectFromPrecompiled(is_read) ||
!LoadObjectFromPrecompiled(is_atomic)) {
return {};
}
entry.entries.images.emplace_back(
static_cast<std::size_t>(offset), static_cast<std::size_t>(index),
static_cast<Tegra::Shader::ImageType>(type), is_bindless != 0, is_written != 0,
is_read != 0, is_atomic != 0);
}
u32 global_memory_count{};
if (!LoadObjectFromPrecompiled(global_memory_count)) {
return {};
}
for (u32 i = 0; i < global_memory_count; ++i) {
u32 cbuf_index{};
u32 cbuf_offset{};
bool is_read{};
bool is_written{};
if (!LoadObjectFromPrecompiled(cbuf_index) || !LoadObjectFromPrecompiled(cbuf_offset) ||
!LoadObjectFromPrecompiled(is_read) || !LoadObjectFromPrecompiled(is_written)) {
return {};
}
entry.entries.global_memory_entries.emplace_back(cbuf_index, cbuf_offset, is_read,
is_written);
}
for (auto& clip_distance : entry.entries.clip_distances) {
if (!LoadObjectFromPrecompiled(clip_distance)) {
return {};
}
}
u64 shader_length{};
if (!LoadObjectFromPrecompiled(shader_length)) {
return {};
}
entry.entries.shader_length = static_cast<std::size_t>(shader_length);
return entry;
}
bool ShaderDiskCacheOpenGL::SaveDecompiledFile(u64 unique_identifier, const std::string& code,
const GLShader::ShaderEntries& entries) {
if (!SaveObjectToPrecompiled(static_cast<u32>(PrecompiledEntryKind::Decompiled)) ||
!SaveObjectToPrecompiled(unique_identifier) ||
!SaveObjectToPrecompiled(static_cast<u32>(code.size())) ||
!SaveArrayToPrecompiled(code.data(), code.size())) {
return false;
}
if (!SaveObjectToPrecompiled(static_cast<u32>(entries.const_buffers.size()))) {
return false;
}
for (const auto& cbuf : entries.const_buffers) {
if (!SaveObjectToPrecompiled(static_cast<u32>(cbuf.GetMaxOffset())) ||
!SaveObjectToPrecompiled(static_cast<u32>(cbuf.GetIndex())) ||
!SaveObjectToPrecompiled(cbuf.IsIndirect())) {
return false;
}
}
if (!SaveObjectToPrecompiled(static_cast<u32>(entries.samplers.size()))) {
return false;
}
for (const auto& sampler : entries.samplers) {
if (!SaveObjectToPrecompiled(static_cast<u64>(sampler.GetOffset())) ||
!SaveObjectToPrecompiled(static_cast<u64>(sampler.GetIndex())) ||
!SaveObjectToPrecompiled(static_cast<u32>(sampler.GetType())) ||
!SaveObjectToPrecompiled(sampler.IsArray()) ||
!SaveObjectToPrecompiled(sampler.IsShadow()) ||
!SaveObjectToPrecompiled(sampler.IsBindless())) {
return false;
}
}
if (!SaveObjectToPrecompiled(static_cast<u32>(entries.images.size()))) {
return false;
}
for (const auto& image : entries.images) {
if (!SaveObjectToPrecompiled(static_cast<u64>(image.GetOffset())) ||
!SaveObjectToPrecompiled(static_cast<u64>(image.GetIndex())) ||
!SaveObjectToPrecompiled(static_cast<u32>(image.GetType())) ||
!SaveObjectToPrecompiled(static_cast<u8>(image.IsBindless() ? 1 : 0)) ||
!SaveObjectToPrecompiled(static_cast<u8>(image.IsWritten() ? 1 : 0)) ||
!SaveObjectToPrecompiled(static_cast<u8>(image.IsRead() ? 1 : 0)) ||
!SaveObjectToPrecompiled(static_cast<u8>(image.IsAtomic() ? 1 : 0))) {
return false;
}
}
if (!SaveObjectToPrecompiled(static_cast<u32>(entries.global_memory_entries.size()))) {
return false;
}
for (const auto& gmem : entries.global_memory_entries) {
if (!SaveObjectToPrecompiled(static_cast<u32>(gmem.GetCbufIndex())) ||
!SaveObjectToPrecompiled(static_cast<u32>(gmem.GetCbufOffset())) ||
!SaveObjectToPrecompiled(gmem.IsRead()) || !SaveObjectToPrecompiled(gmem.IsWritten())) {
return false;
}
}
for (const bool clip_distance : entries.clip_distances) {
if (!SaveObjectToPrecompiled(clip_distance)) {
return false;
}
}
if (!SaveObjectToPrecompiled(static_cast<u64>(entries.shader_length))) {
return false;
}
return true;
return dumps;
}
void ShaderDiskCacheOpenGL::InvalidateTransferable() {
@ -494,10 +357,11 @@ void ShaderDiskCacheOpenGL::SaveRaw(const ShaderDiskCacheRaw& entry) {
}
FileUtil::IOFile file = AppendTransferableFile();
if (!file.IsOpen())
if (!file.IsOpen()) {
return;
}
if (file.WriteObject(TransferableEntryKind::Raw) != 1 || !entry.Save(file)) {
LOG_ERROR(Render_OpenGL, "Failed to save raw transferable cache entry - removing");
LOG_ERROR(Render_OpenGL, "Failed to save raw transferable cache entry, removing");
file.Close();
InvalidateTransferable();
return;
@ -523,29 +387,39 @@ void ShaderDiskCacheOpenGL::SaveUsage(const ShaderDiskCacheUsage& usage) {
FileUtil::IOFile file = AppendTransferableFile();
if (!file.IsOpen())
return;
if (file.WriteObject(TransferableEntryKind::Usage) != 1 || file.WriteObject(usage) != 1) {
LOG_ERROR(Render_OpenGL, "Failed to save usage transferable cache entry - removing");
const auto Close = [&] {
LOG_ERROR(Render_OpenGL, "Failed to save usage transferable cache entry, removing");
file.Close();
InvalidateTransferable();
};
if (file.WriteObject(TransferableEntryKind::Usage) != 1 ||
file.WriteObject(usage.unique_identifier) != 1 || file.WriteObject(usage.variant) != 1 ||
file.WriteObject(static_cast<u32>(usage.keys.size())) != 1 ||
file.WriteObject(static_cast<u32>(usage.bound_samplers.size())) != 1 ||
file.WriteObject(static_cast<u32>(usage.bindless_samplers.size())) != 1) {
Close();
return;
}
for (const auto& [pair, value] : usage.keys) {
const auto [cbuf, offset] = pair;
if (file.WriteObject(ConstBufferKey{cbuf, offset, value}) != 1) {
Close();
return;
}
}
void ShaderDiskCacheOpenGL::SaveDecompiled(u64 unique_identifier, const std::string& code,
const GLShader::ShaderEntries& entries) {
if (!is_usable) {
for (const auto& [offset, sampler] : usage.bound_samplers) {
if (file.WriteObject(BoundSamplerKey{offset, sampler}) != 1) {
Close();
return;
}
if (precompiled_cache_virtual_file.GetSize() == 0) {
SavePrecompiledHeaderToVirtualPrecompiledCache();
}
if (!SaveDecompiledFile(unique_identifier, code, entries)) {
LOG_ERROR(Render_OpenGL,
"Failed to save decompiled entry to the precompiled file - removing");
InvalidatePrecompiled();
for (const auto& [pair, sampler] : usage.bindless_samplers) {
const auto [cbuf, offset] = pair;
if (file.WriteObject(BindlessSamplerKey{cbuf, offset, sampler}) != 1) {
Close();
return;
}
}
}
@ -554,6 +428,13 @@ void ShaderDiskCacheOpenGL::SaveDump(const ShaderDiskCacheUsage& usage, GLuint p
return;
}
// TODO(Rodrigo): This is a design smell. I shouldn't be having to manually write the header
// when writing the dump. This should be done the moment I get access to write to the virtual
// file.
if (precompiled_cache_virtual_file.GetSize() == 0) {
SavePrecompiledHeaderToVirtualPrecompiledCache();
}
GLint binary_length{};
glGetProgramiv(program, GL_PROGRAM_BINARY_LENGTH, &binary_length);
@ -561,21 +442,51 @@ void ShaderDiskCacheOpenGL::SaveDump(const ShaderDiskCacheUsage& usage, GLuint p
std::vector<u8> binary(binary_length);
glGetProgramBinary(program, binary_length, nullptr, &binary_format, binary.data());
if (!SaveObjectToPrecompiled(static_cast<u32>(PrecompiledEntryKind::Dump)) ||
!SaveObjectToPrecompiled(usage) ||
!SaveObjectToPrecompiled(static_cast<u32>(binary_format)) ||
!SaveObjectToPrecompiled(static_cast<u32>(binary_length)) ||
!SaveArrayToPrecompiled(binary.data(), binary.size())) {
LOG_ERROR(Render_OpenGL, "Failed to save binary program file in shader={:016x} - removing",
const auto Close = [&] {
LOG_ERROR(Render_OpenGL, "Failed to save binary program file in shader={:016X}, removing",
usage.unique_identifier);
InvalidatePrecompiled();
};
if (!SaveObjectToPrecompiled(usage.unique_identifier) ||
!SaveObjectToPrecompiled(usage.variant) ||
!SaveObjectToPrecompiled(static_cast<u32>(usage.keys.size())) ||
!SaveObjectToPrecompiled(static_cast<u32>(usage.bound_samplers.size())) ||
!SaveObjectToPrecompiled(static_cast<u32>(usage.bindless_samplers.size()))) {
Close();
return;
}
for (const auto& [pair, value] : usage.keys) {
const auto [cbuf, offset] = pair;
if (SaveObjectToPrecompiled(ConstBufferKey{cbuf, offset, value}) != 1) {
Close();
return;
}
}
for (const auto& [offset, sampler] : usage.bound_samplers) {
if (SaveObjectToPrecompiled(BoundSamplerKey{offset, sampler}) != 1) {
Close();
return;
}
}
for (const auto& [pair, sampler] : usage.bindless_samplers) {
const auto [cbuf, offset] = pair;
if (SaveObjectToPrecompiled(BindlessSamplerKey{cbuf, offset, sampler}) != 1) {
Close();
return;
}
}
if (!SaveObjectToPrecompiled(static_cast<u32>(binary_format)) ||
!SaveObjectToPrecompiled(static_cast<u32>(binary_length)) ||
!SaveArrayToPrecompiled(binary.data(), binary.size())) {
Close();
}
}
FileUtil::IOFile ShaderDiskCacheOpenGL::AppendTransferableFile() const {
if (!EnsureDirectories())
if (!EnsureDirectories()) {
return {};
}
const auto transferable_path{GetTransferablePath()};
const bool existed = FileUtil::Exists(transferable_path);
@ -607,8 +518,8 @@ void ShaderDiskCacheOpenGL::SavePrecompiledHeaderToVirtualPrecompiledCache() {
void ShaderDiskCacheOpenGL::SaveVirtualPrecompiledFile() {
precompiled_cache_virtual_file_offset = 0;
const std::vector<u8>& uncompressed = precompiled_cache_virtual_file.ReadAllBytes();
const std::vector<u8>& compressed =
const std::vector<u8> uncompressed = precompiled_cache_virtual_file.ReadAllBytes();
const std::vector<u8> compressed =
Common::Compression::CompressDataZSTDDefault(uncompressed.data(), uncompressed.size());
const auto precompiled_path{GetPrecompiledPath()};

View file

@ -8,6 +8,7 @@
#include <optional>
#include <string>
#include <tuple>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <utility>
@ -19,6 +20,7 @@
#include "common/common_types.h"
#include "core/file_sys/vfs_vector.h"
#include "video_core/renderer_opengl/gl_shader_gen.h"
#include "video_core/shader/const_buffer_locker.h"
namespace Core {
class System;
@ -53,6 +55,7 @@ struct BaseBindings {
return !operator==(rhs);
}
};
static_assert(std::is_trivially_copyable_v<BaseBindings>);
/// Describes the different variants a single program can be compiled.
struct ProgramVariant {
@ -70,13 +73,20 @@ struct ProgramVariant {
}
};
static_assert(std::is_trivially_copyable_v<ProgramVariant>);
/// Describes how a shader is used.
struct ShaderDiskCacheUsage {
u64 unique_identifier{};
ProgramVariant variant;
VideoCommon::Shader::KeyMap keys;
VideoCommon::Shader::BoundSamplerMap bound_samplers;
VideoCommon::Shader::BindlessSamplerMap bindless_samplers;
bool operator==(const ShaderDiskCacheUsage& rhs) const {
return std::tie(unique_identifier, variant) == std::tie(rhs.unique_identifier, rhs.variant);
return std::tie(unique_identifier, variant, keys, bound_samplers, bindless_samplers) ==
std::tie(rhs.unique_identifier, rhs.variant, rhs.keys, rhs.bound_samplers,
rhs.bindless_samplers);
}
bool operator!=(const ShaderDiskCacheUsage& rhs) const {
@ -123,8 +133,7 @@ namespace OpenGL {
class ShaderDiskCacheRaw {
public:
explicit ShaderDiskCacheRaw(u64 unique_identifier, ProgramType program_type,
u32 program_code_size, u32 program_code_size_b,
ProgramCode program_code, ProgramCode program_code_b);
ProgramCode program_code, ProgramCode program_code_b = {});
ShaderDiskCacheRaw();
~ShaderDiskCacheRaw();
@ -155,22 +164,14 @@ public:
private:
u64 unique_identifier{};
ProgramType program_type{};
u32 program_code_size{};
u32 program_code_size_b{};
ProgramCode program_code;
ProgramCode program_code_b;
};
/// Contains decompiled data from a shader
struct ShaderDiskCacheDecompiled {
std::string code;
GLShader::ShaderEntries entries;
};
/// Contains an OpenGL dumped binary program
struct ShaderDiskCacheDump {
GLenum binary_format;
GLenum binary_format{};
std::vector<u8> binary;
};
@ -184,9 +185,7 @@ public:
LoadTransferable();
/// Loads current game's precompiled cache. Invalidates on failure.
std::pair<std::unordered_map<u64, ShaderDiskCacheDecompiled>,
std::unordered_map<ShaderDiskCacheUsage, ShaderDiskCacheDump>>
LoadPrecompiled();
std::unordered_map<ShaderDiskCacheUsage, ShaderDiskCacheDump> LoadPrecompiled();
/// Removes the transferable (and precompiled) cache file.
void InvalidateTransferable();
@ -200,10 +199,6 @@ public:
/// Saves shader usage to the transferable file. Does not check for collisions.
void SaveUsage(const ShaderDiskCacheUsage& usage);
/// Saves a decompiled entry to the precompiled file. Does not check for collisions.
void SaveDecompiled(u64 unique_identifier, const std::string& code,
const GLShader::ShaderEntries& entries);
/// Saves a dump entry to the precompiled file. Does not check for collisions.
void SaveDump(const ShaderDiskCacheUsage& usage, GLuint program);
@ -212,18 +207,9 @@ public:
private:
/// Loads the transferable cache. Returns empty on failure.
std::optional<std::pair<std::unordered_map<u64, ShaderDiskCacheDecompiled>,
std::unordered_map<ShaderDiskCacheUsage, ShaderDiskCacheDump>>>
std::optional<std::unordered_map<ShaderDiskCacheUsage, ShaderDiskCacheDump>>
LoadPrecompiledFile(FileUtil::IOFile& file);
/// Loads a decompiled cache entry from m_precompiled_cache_virtual_file. Returns empty on
/// failure.
std::optional<ShaderDiskCacheDecompiled> LoadDecompiledEntry();
/// Saves a decompiled entry to the passed file. Returns true on success.
bool SaveDecompiledFile(u64 unique_identifier, const std::string& code,
const GLShader::ShaderEntries& entries);
/// Opens current game's transferable file and write it's header if it doesn't exist
FileUtil::IOFile AppendTransferableFile() const;

View file

@ -16,17 +16,8 @@ using VideoCommon::Shader::CompilerSettings;
using VideoCommon::Shader::ProgramCode;
using VideoCommon::Shader::ShaderIR;
static constexpr u32 PROGRAM_OFFSET = 10;
static constexpr u32 COMPUTE_OFFSET = 0;
static constexpr CompilerSettings settings{CompileDepth::NoFlowStack, true};
ProgramResult GenerateVertexShader(const Device& device, const ShaderSetup& setup) {
const std::string id = fmt::format("{:016x}", setup.program.unique_identifier);
std::string out = "// Shader Unique Id: VS" + id + "\n\n";
out += GetCommonDeclarations();
std::string GenerateVertexShader(const Device& device, const ShaderIR& ir, const ShaderIR* ir_b) {
std::string out = GetCommonDeclarations();
out += R"(
layout (std140, binding = EMULATION_UBO_BINDING) uniform vs_config {
vec4 viewport_flip;
@ -34,17 +25,10 @@ layout (std140, binding = EMULATION_UBO_BINDING) uniform vs_config {
};
)";
const ShaderIR program_ir(setup.program.code, PROGRAM_OFFSET, setup.program.size_a, settings);
const auto stage = setup.IsDualProgram() ? ProgramType::VertexA : ProgramType::VertexB;
ProgramResult program = Decompile(device, program_ir, stage, "vertex");
out += program.first;
if (setup.IsDualProgram()) {
const ShaderIR program_ir_b(setup.program.code_b, PROGRAM_OFFSET, setup.program.size_b,
settings);
ProgramResult program_b = Decompile(device, program_ir_b, ProgramType::VertexB, "vertex_b");
out += program_b.first;
const auto stage = ir_b ? ProgramType::VertexA : ProgramType::VertexB;
out += Decompile(device, ir, stage, "vertex");
if (ir_b) {
out += Decompile(device, *ir_b, ProgramType::VertexB, "vertex_b");
}
out += R"(
@ -52,7 +36,7 @@ void main() {
execute_vertex();
)";
if (setup.IsDualProgram()) {
if (ir_b) {
out += " execute_vertex_b();";
}
@ -66,17 +50,13 @@ void main() {
// Viewport can be flipped, which is unsupported by glViewport
gl_Position.xy *= viewport_flip.xy;
}
})";
return {std::move(out), std::move(program.second)};
}
)";
return out;
}
ProgramResult GenerateGeometryShader(const Device& device, const ShaderSetup& setup) {
const std::string id = fmt::format("{:016x}", setup.program.unique_identifier);
std::string out = "// Shader Unique Id: GS" + id + "\n\n";
out += GetCommonDeclarations();
std::string GenerateGeometryShader(const Device& device, const ShaderIR& ir) {
std::string out = GetCommonDeclarations();
out += R"(
layout (std140, binding = EMULATION_UBO_BINDING) uniform gs_config {
vec4 viewport_flip;
@ -84,25 +64,18 @@ layout (std140, binding = EMULATION_UBO_BINDING) uniform gs_config {
};
)";
const ShaderIR program_ir(setup.program.code, PROGRAM_OFFSET, setup.program.size_a, settings);
ProgramResult program = Decompile(device, program_ir, ProgramType::Geometry, "geometry");
out += program.first;
out += Decompile(device, ir, ProgramType::Geometry, "geometry");
out += R"(
void main() {
execute_geometry();
};)";
return {std::move(out), std::move(program.second)};
}
)";
return out;
}
ProgramResult GenerateFragmentShader(const Device& device, const ShaderSetup& setup) {
const std::string id = fmt::format("{:016x}", setup.program.unique_identifier);
std::string out = "// Shader Unique Id: FS" + id + "\n\n";
out += GetCommonDeclarations();
std::string GenerateFragmentShader(const Device& device, const ShaderIR& ir) {
std::string out = GetCommonDeclarations();
out += R"(
layout (location = 0) out vec4 FragColor0;
layout (location = 1) out vec4 FragColor1;
@ -119,36 +92,25 @@ layout (std140, binding = EMULATION_UBO_BINDING) uniform fs_config {
};
)";
const ShaderIR program_ir(setup.program.code, PROGRAM_OFFSET, setup.program.size_a, settings);
ProgramResult program = Decompile(device, program_ir, ProgramType::Fragment, "fragment");
out += program.first;
out += Decompile(device, ir, ProgramType::Fragment, "fragment");
out += R"(
void main() {
execute_fragment();
}
)";
return {std::move(out), std::move(program.second)};
return out;
}
ProgramResult GenerateComputeShader(const Device& device, const ShaderSetup& setup) {
const std::string id = fmt::format("{:016x}", setup.program.unique_identifier);
std::string out = "// Shader Unique Id: CS" + id + "\n\n";
out += GetCommonDeclarations();
const ShaderIR program_ir(setup.program.code, COMPUTE_OFFSET, setup.program.size_a, settings);
ProgramResult program = Decompile(device, program_ir, ProgramType::Compute, "compute");
out += program.first;
std::string GenerateComputeShader(const Device& device, const ShaderIR& ir) {
std::string out = GetCommonDeclarations();
out += Decompile(device, ir, ProgramType::Compute, "compute");
out += R"(
void main() {
execute_compute();
}
)";
return {std::move(out), std::move(program.second)};
return out;
}
} // namespace OpenGL::GLShader

View file

@ -17,44 +17,18 @@ class Device;
namespace OpenGL::GLShader {
using VideoCommon::Shader::ProgramCode;
struct ShaderSetup {
explicit ShaderSetup(ProgramCode program_code) {
program.code = std::move(program_code);
}
struct {
ProgramCode code;
ProgramCode code_b; // Used for dual vertex shaders
u64 unique_identifier;
std::size_t size_a;
std::size_t size_b;
} program;
/// Used in scenarios where we have a dual vertex shaders
void SetProgramB(ProgramCode program_b) {
program.code_b = std::move(program_b);
has_program_b = true;
}
bool IsDualProgram() const {
return has_program_b;
}
private:
bool has_program_b{};
};
using VideoCommon::Shader::ShaderIR;
/// Generates the GLSL vertex shader program source code for the given VS program
ProgramResult GenerateVertexShader(const Device& device, const ShaderSetup& setup);
std::string GenerateVertexShader(const Device& device, const ShaderIR& ir, const ShaderIR* ir_b);
/// Generates the GLSL geometry shader program source code for the given GS program
ProgramResult GenerateGeometryShader(const Device& device, const ShaderSetup& setup);
std::string GenerateGeometryShader(const Device& device, const ShaderIR& ir);
/// Generates the GLSL fragment shader program source code for the given FS program
ProgramResult GenerateFragmentShader(const Device& device, const ShaderSetup& setup);
std::string GenerateFragmentShader(const Device& device, const ShaderIR& ir);
/// Generates the GLSL compute shader program source code for the given CS program
ProgramResult GenerateComputeShader(const Device& device, const ShaderSetup& setup);
std::string GenerateComputeShader(const Device& device, const ShaderIR& ir);
} // namespace OpenGL::GLShader

View file

@ -1704,6 +1704,13 @@ public:
return expr.value ? decomp.v_true : decomp.v_false;
}
Id operator()(const ExprGprEqual& expr) {
const Id target = decomp.Constant(decomp.t_uint, expr.value);
const Id gpr = decomp.BitcastTo<Type::Uint>(
decomp.Emit(decomp.OpLoad(decomp.t_float, decomp.registers.at(expr.gpr))));
return decomp.Emit(decomp.OpLogicalEqual(decomp.t_uint, gpr, target));
}
Id Visit(const Expr& node) {
return std::visit(*this, *node);
}

View file

@ -228,6 +228,10 @@ public:
inner += expr.value ? "true" : "false";
}
void operator()(const ExprGprEqual& expr) {
inner += "( gpr_" + std::to_string(expr.gpr) + " == " + std::to_string(expr.value) + ')';
}
const std::string& GetResult() const {
return inner;
}

View file

@ -0,0 +1,110 @@
// Copyright 2019 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <algorithm>
#include <memory>
#include "common/assert.h"
#include "common/common_types.h"
#include "video_core/engines/maxwell_3d.h"
#include "video_core/shader/const_buffer_locker.h"
namespace VideoCommon::Shader {
using Tegra::Engines::SamplerDescriptor;
ConstBufferLocker::ConstBufferLocker(Tegra::Engines::ShaderType shader_stage)
: stage{shader_stage} {}
ConstBufferLocker::ConstBufferLocker(Tegra::Engines::ShaderType shader_stage,
Tegra::Engines::ConstBufferEngineInterface& engine)
: stage{shader_stage}, engine{&engine} {}
ConstBufferLocker::~ConstBufferLocker() = default;
std::optional<u32> ConstBufferLocker::ObtainKey(u32 buffer, u32 offset) {
const std::pair<u32, u32> key = {buffer, offset};
const auto iter = keys.find(key);
if (iter != keys.end()) {
return iter->second;
}
if (!engine) {
return std::nullopt;
}
const u32 value = engine->AccessConstBuffer32(stage, buffer, offset);
keys.emplace(key, value);
return value;
}
std::optional<SamplerDescriptor> ConstBufferLocker::ObtainBoundSampler(u32 offset) {
const u32 key = offset;
const auto iter = bound_samplers.find(key);
if (iter != bound_samplers.end()) {
return iter->second;
}
if (!engine) {
return std::nullopt;
}
const SamplerDescriptor value = engine->AccessBoundSampler(stage, offset);
bound_samplers.emplace(key, value);
return value;
}
std::optional<Tegra::Engines::SamplerDescriptor> ConstBufferLocker::ObtainBindlessSampler(
u32 buffer, u32 offset) {
const std::pair key = {buffer, offset};
const auto iter = bindless_samplers.find(key);
if (iter != bindless_samplers.end()) {
return iter->second;
}
if (!engine) {
return std::nullopt;
}
const SamplerDescriptor value = engine->AccessBindlessSampler(stage, buffer, offset);
bindless_samplers.emplace(key, value);
return value;
}
void ConstBufferLocker::InsertKey(u32 buffer, u32 offset, u32 value) {
keys.insert_or_assign({buffer, offset}, value);
}
void ConstBufferLocker::InsertBoundSampler(u32 offset, SamplerDescriptor sampler) {
bound_samplers.insert_or_assign(offset, sampler);
}
void ConstBufferLocker::InsertBindlessSampler(u32 buffer, u32 offset, SamplerDescriptor sampler) {
bindless_samplers.insert_or_assign({buffer, offset}, sampler);
}
bool ConstBufferLocker::IsConsistent() const {
if (!engine) {
return false;
}
return std::all_of(keys.begin(), keys.end(),
[this](const auto& pair) {
const auto [cbuf, offset] = pair.first;
const auto value = pair.second;
return value == engine->AccessConstBuffer32(stage, cbuf, offset);
}) &&
std::all_of(bound_samplers.begin(), bound_samplers.end(),
[this](const auto& sampler) {
const auto [key, value] = sampler;
return value == engine->AccessBoundSampler(stage, key);
}) &&
std::all_of(bindless_samplers.begin(), bindless_samplers.end(),
[this](const auto& sampler) {
const auto [cbuf, offset] = sampler.first;
const auto value = sampler.second;
return value == engine->AccessBindlessSampler(stage, cbuf, offset);
});
}
bool ConstBufferLocker::HasEqualKeys(const ConstBufferLocker& rhs) const {
return keys == rhs.keys && bound_samplers == rhs.bound_samplers &&
bindless_samplers == rhs.bindless_samplers;
}
} // namespace VideoCommon::Shader

View file

@ -0,0 +1,80 @@
// Copyright 2019 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <unordered_map>
#include "common/common_types.h"
#include "common/hash.h"
#include "video_core/engines/const_buffer_engine_interface.h"
namespace VideoCommon::Shader {
using KeyMap = std::unordered_map<std::pair<u32, u32>, u32, Common::PairHash>;
using BoundSamplerMap = std::unordered_map<u32, Tegra::Engines::SamplerDescriptor>;
using BindlessSamplerMap =
std::unordered_map<std::pair<u32, u32>, Tegra::Engines::SamplerDescriptor, Common::PairHash>;
/**
* The ConstBufferLocker is a class use to interface the 3D and compute engines with the shader
* compiler. with it, the shader can obtain required data from GPU state and store it for disk
* shader compilation.
**/
class ConstBufferLocker {
public:
explicit ConstBufferLocker(Tegra::Engines::ShaderType shader_stage);
explicit ConstBufferLocker(Tegra::Engines::ShaderType shader_stage,
Tegra::Engines::ConstBufferEngineInterface& engine);
~ConstBufferLocker();
/// Retrieves a key from the locker, if it's registered, it will give the registered value, if
/// not it will obtain it from maxwell3d and register it.
std::optional<u32> ObtainKey(u32 buffer, u32 offset);
std::optional<Tegra::Engines::SamplerDescriptor> ObtainBoundSampler(u32 offset);
std::optional<Tegra::Engines::SamplerDescriptor> ObtainBindlessSampler(u32 buffer, u32 offset);
/// Inserts a key.
void InsertKey(u32 buffer, u32 offset, u32 value);
/// Inserts a bound sampler key.
void InsertBoundSampler(u32 offset, Tegra::Engines::SamplerDescriptor sampler);
/// Inserts a bindless sampler key.
void InsertBindlessSampler(u32 buffer, u32 offset, Tegra::Engines::SamplerDescriptor sampler);
/// Checks keys and samplers against engine's current const buffers. Returns true if they are
/// the same value, false otherwise;
bool IsConsistent() const;
/// Returns true if the keys are equal to the other ones in the locker.
bool HasEqualKeys(const ConstBufferLocker& rhs) const;
/// Gives an getter to the const buffer keys in the database.
const KeyMap& GetKeys() const {
return keys;
}
/// Gets samplers database.
const BoundSamplerMap& GetBoundSamplers() const {
return bound_samplers;
}
/// Gets bindless samplers database.
const BindlessSamplerMap& GetBindlessSamplers() const {
return bindless_samplers;
}
private:
const Tegra::Engines::ShaderType stage;
Tegra::Engines::ConstBufferEngineInterface* engine = nullptr;
KeyMap keys;
BoundSamplerMap bound_samplers;
BindlessSamplerMap bindless_samplers;
};
} // namespace VideoCommon::Shader

View file

@ -35,14 +35,20 @@ struct BlockStack {
std::stack<u32> pbk_stack{};
};
struct BlockBranchInfo {
Condition condition{};
s32 address{exit_branch};
bool kill{};
bool is_sync{};
bool is_brk{};
bool ignore{};
};
template <typename T, typename... Args>
BlockBranchInfo MakeBranchInfo(Args&&... args) {
static_assert(std::is_convertible_v<T, BranchData>);
return std::make_shared<BranchData>(T(std::forward<Args>(args)...));
}
bool BlockBranchIsIgnored(BlockBranchInfo first) {
bool ignore = false;
if (std::holds_alternative<SingleBranch>(*first)) {
const auto branch = std::get_if<SingleBranch>(first.get());
ignore = branch->ignore;
}
return ignore;
}
struct BlockInfo {
u32 start{};
@ -56,10 +62,11 @@ struct BlockInfo {
};
struct CFGRebuildState {
explicit CFGRebuildState(const ProgramCode& program_code, const std::size_t program_size,
const u32 start)
: start{start}, program_code{program_code}, program_size{program_size} {}
explicit CFGRebuildState(const ProgramCode& program_code, u32 start, ConstBufferLocker& locker)
: program_code{program_code}, start{start}, locker{locker} {}
const ProgramCode& program_code;
ConstBufferLocker& locker;
u32 start{};
std::vector<BlockInfo> block_info{};
std::list<u32> inspect_queries{};
@ -69,8 +76,6 @@ struct CFGRebuildState {
std::map<u32, u32> ssy_labels{};
std::map<u32, u32> pbk_labels{};
std::unordered_map<u32, BlockStack> stacks{};
const ProgramCode& program_code;
const std::size_t program_size;
ASTManager* manager;
};
@ -124,10 +129,116 @@ enum class ParseResult : u32 {
AbnormalFlow,
};
struct BranchIndirectInfo {
u32 buffer{};
u32 offset{};
u32 entries{};
s32 relative_position{};
};
std::optional<BranchIndirectInfo> TrackBranchIndirectInfo(const CFGRebuildState& state,
u32 start_address, u32 current_position) {
const u32 shader_start = state.start;
u32 pos = current_position;
BranchIndirectInfo result{};
u64 track_register = 0;
// Step 0 Get BRX Info
const Instruction instr = {state.program_code[pos]};
const auto opcode = OpCode::Decode(instr);
if (opcode->get().GetId() != OpCode::Id::BRX) {
return std::nullopt;
}
if (instr.brx.constant_buffer != 0) {
return std::nullopt;
}
track_register = instr.gpr8.Value();
result.relative_position = instr.brx.GetBranchExtend();
pos--;
bool found_track = false;
// Step 1 Track LDC
while (pos >= shader_start) {
if (IsSchedInstruction(pos, shader_start)) {
pos--;
continue;
}
const Instruction instr = {state.program_code[pos]};
const auto opcode = OpCode::Decode(instr);
if (opcode->get().GetId() == OpCode::Id::LD_C) {
if (instr.gpr0.Value() == track_register &&
instr.ld_c.type.Value() == Tegra::Shader::UniformType::Single) {
result.buffer = instr.cbuf36.index.Value();
result.offset = static_cast<u32>(instr.cbuf36.GetOffset());
track_register = instr.gpr8.Value();
pos--;
found_track = true;
break;
}
}
pos--;
}
if (!found_track) {
return std::nullopt;
}
found_track = false;
// Step 2 Track SHL
while (pos >= shader_start) {
if (IsSchedInstruction(pos, shader_start)) {
pos--;
continue;
}
const Instruction instr = state.program_code[pos];
const auto opcode = OpCode::Decode(instr);
if (opcode->get().GetId() == OpCode::Id::SHL_IMM) {
if (instr.gpr0.Value() == track_register) {
track_register = instr.gpr8.Value();
pos--;
found_track = true;
break;
}
}
pos--;
}
if (!found_track) {
return std::nullopt;
}
found_track = false;
// Step 3 Track IMNMX
while (pos >= shader_start) {
if (IsSchedInstruction(pos, shader_start)) {
pos--;
continue;
}
const Instruction instr = state.program_code[pos];
const auto opcode = OpCode::Decode(instr);
if (opcode->get().GetId() == OpCode::Id::IMNMX_IMM) {
if (instr.gpr0.Value() == track_register) {
track_register = instr.gpr8.Value();
result.entries = instr.alu.GetSignedImm20_20() + 1;
pos--;
found_track = true;
break;
}
}
pos--;
}
if (!found_track) {
return std::nullopt;
}
return result;
}
std::pair<ParseResult, ParseInfo> ParseCode(CFGRebuildState& state, u32 address) {
u32 offset = static_cast<u32>(address);
const u32 end_address = static_cast<u32>(state.program_size / sizeof(Instruction));
const u32 end_address = static_cast<u32>(state.program_code.size());
ParseInfo parse_info{};
SingleBranch single_branch{};
const auto insert_label = [](CFGRebuildState& state, u32 address) {
const auto pair = state.labels.emplace(address);
@ -140,13 +251,14 @@ std::pair<ParseResult, ParseInfo> ParseCode(CFGRebuildState& state, u32 address)
if (offset >= end_address) {
// ASSERT_OR_EXECUTE can't be used, as it ignores the break
ASSERT_MSG(false, "Shader passed the current limit!");
parse_info.branch_info.address = exit_branch;
parse_info.branch_info.ignore = false;
single_branch.address = exit_branch;
single_branch.ignore = false;
break;
}
if (state.registered.count(offset) != 0) {
parse_info.branch_info.address = offset;
parse_info.branch_info.ignore = true;
single_branch.address = offset;
single_branch.ignore = true;
break;
}
if (IsSchedInstruction(offset, state.start)) {
@ -163,24 +275,26 @@ std::pair<ParseResult, ParseInfo> ParseCode(CFGRebuildState& state, u32 address)
switch (opcode->get().GetId()) {
case OpCode::Id::EXIT: {
const auto pred_index = static_cast<u32>(instr.pred.pred_index);
parse_info.branch_info.condition.predicate =
GetPredicate(pred_index, instr.negate_pred != 0);
if (parse_info.branch_info.condition.predicate == Pred::NeverExecute) {
single_branch.condition.predicate = GetPredicate(pred_index, instr.negate_pred != 0);
if (single_branch.condition.predicate == Pred::NeverExecute) {
offset++;
continue;
}
const ConditionCode cc = instr.flow_condition_code;
parse_info.branch_info.condition.cc = cc;
single_branch.condition.cc = cc;
if (cc == ConditionCode::F) {
offset++;
continue;
}
parse_info.branch_info.address = exit_branch;
parse_info.branch_info.kill = false;
parse_info.branch_info.is_sync = false;
parse_info.branch_info.is_brk = false;
parse_info.branch_info.ignore = false;
single_branch.address = exit_branch;
single_branch.kill = false;
single_branch.is_sync = false;
single_branch.is_brk = false;
single_branch.ignore = false;
parse_info.end_address = offset;
parse_info.branch_info = MakeBranchInfo<SingleBranch>(
single_branch.condition, single_branch.address, single_branch.kill,
single_branch.is_sync, single_branch.is_brk, single_branch.ignore);
return {ParseResult::ControlCaught, parse_info};
}
@ -189,99 +303,107 @@ std::pair<ParseResult, ParseInfo> ParseCode(CFGRebuildState& state, u32 address)
return {ParseResult::AbnormalFlow, parse_info};
}
const auto pred_index = static_cast<u32>(instr.pred.pred_index);
parse_info.branch_info.condition.predicate =
GetPredicate(pred_index, instr.negate_pred != 0);
if (parse_info.branch_info.condition.predicate == Pred::NeverExecute) {
single_branch.condition.predicate = GetPredicate(pred_index, instr.negate_pred != 0);
if (single_branch.condition.predicate == Pred::NeverExecute) {
offset++;
continue;
}
const ConditionCode cc = instr.flow_condition_code;
parse_info.branch_info.condition.cc = cc;
single_branch.condition.cc = cc;
if (cc == ConditionCode::F) {
offset++;
continue;
}
const u32 branch_offset = offset + instr.bra.GetBranchTarget();
if (branch_offset == 0) {
parse_info.branch_info.address = exit_branch;
single_branch.address = exit_branch;
} else {
parse_info.branch_info.address = branch_offset;
single_branch.address = branch_offset;
}
insert_label(state, branch_offset);
parse_info.branch_info.kill = false;
parse_info.branch_info.is_sync = false;
parse_info.branch_info.is_brk = false;
parse_info.branch_info.ignore = false;
single_branch.kill = false;
single_branch.is_sync = false;
single_branch.is_brk = false;
single_branch.ignore = false;
parse_info.end_address = offset;
parse_info.branch_info = MakeBranchInfo<SingleBranch>(
single_branch.condition, single_branch.address, single_branch.kill,
single_branch.is_sync, single_branch.is_brk, single_branch.ignore);
return {ParseResult::ControlCaught, parse_info};
}
case OpCode::Id::SYNC: {
const auto pred_index = static_cast<u32>(instr.pred.pred_index);
parse_info.branch_info.condition.predicate =
GetPredicate(pred_index, instr.negate_pred != 0);
if (parse_info.branch_info.condition.predicate == Pred::NeverExecute) {
single_branch.condition.predicate = GetPredicate(pred_index, instr.negate_pred != 0);
if (single_branch.condition.predicate == Pred::NeverExecute) {
offset++;
continue;
}
const ConditionCode cc = instr.flow_condition_code;
parse_info.branch_info.condition.cc = cc;
single_branch.condition.cc = cc;
if (cc == ConditionCode::F) {
offset++;
continue;
}
parse_info.branch_info.address = unassigned_branch;
parse_info.branch_info.kill = false;
parse_info.branch_info.is_sync = true;
parse_info.branch_info.is_brk = false;
parse_info.branch_info.ignore = false;
single_branch.address = unassigned_branch;
single_branch.kill = false;
single_branch.is_sync = true;
single_branch.is_brk = false;
single_branch.ignore = false;
parse_info.end_address = offset;
parse_info.branch_info = MakeBranchInfo<SingleBranch>(
single_branch.condition, single_branch.address, single_branch.kill,
single_branch.is_sync, single_branch.is_brk, single_branch.ignore);
return {ParseResult::ControlCaught, parse_info};
}
case OpCode::Id::BRK: {
const auto pred_index = static_cast<u32>(instr.pred.pred_index);
parse_info.branch_info.condition.predicate =
GetPredicate(pred_index, instr.negate_pred != 0);
if (parse_info.branch_info.condition.predicate == Pred::NeverExecute) {
single_branch.condition.predicate = GetPredicate(pred_index, instr.negate_pred != 0);
if (single_branch.condition.predicate == Pred::NeverExecute) {
offset++;
continue;
}
const ConditionCode cc = instr.flow_condition_code;
parse_info.branch_info.condition.cc = cc;
single_branch.condition.cc = cc;
if (cc == ConditionCode::F) {
offset++;
continue;
}
parse_info.branch_info.address = unassigned_branch;
parse_info.branch_info.kill = false;
parse_info.branch_info.is_sync = false;
parse_info.branch_info.is_brk = true;
parse_info.branch_info.ignore = false;
single_branch.address = unassigned_branch;
single_branch.kill = false;
single_branch.is_sync = false;
single_branch.is_brk = true;
single_branch.ignore = false;
parse_info.end_address = offset;
parse_info.branch_info = MakeBranchInfo<SingleBranch>(
single_branch.condition, single_branch.address, single_branch.kill,
single_branch.is_sync, single_branch.is_brk, single_branch.ignore);
return {ParseResult::ControlCaught, parse_info};
}
case OpCode::Id::KIL: {
const auto pred_index = static_cast<u32>(instr.pred.pred_index);
parse_info.branch_info.condition.predicate =
GetPredicate(pred_index, instr.negate_pred != 0);
if (parse_info.branch_info.condition.predicate == Pred::NeverExecute) {
single_branch.condition.predicate = GetPredicate(pred_index, instr.negate_pred != 0);
if (single_branch.condition.predicate == Pred::NeverExecute) {
offset++;
continue;
}
const ConditionCode cc = instr.flow_condition_code;
parse_info.branch_info.condition.cc = cc;
single_branch.condition.cc = cc;
if (cc == ConditionCode::F) {
offset++;
continue;
}
parse_info.branch_info.address = exit_branch;
parse_info.branch_info.kill = true;
parse_info.branch_info.is_sync = false;
parse_info.branch_info.is_brk = false;
parse_info.branch_info.ignore = false;
single_branch.address = exit_branch;
single_branch.kill = true;
single_branch.is_sync = false;
single_branch.is_brk = false;
single_branch.ignore = false;
parse_info.end_address = offset;
parse_info.branch_info = MakeBranchInfo<SingleBranch>(
single_branch.condition, single_branch.address, single_branch.kill,
single_branch.is_sync, single_branch.is_brk, single_branch.ignore);
return {ParseResult::ControlCaught, parse_info};
}
@ -298,6 +420,29 @@ std::pair<ParseResult, ParseInfo> ParseCode(CFGRebuildState& state, u32 address)
break;
}
case OpCode::Id::BRX: {
auto tmp = TrackBranchIndirectInfo(state, address, offset);
if (tmp) {
auto result = *tmp;
std::vector<CaseBranch> branches{};
s32 pc_target = offset + result.relative_position;
for (u32 i = 0; i < result.entries; i++) {
auto k = state.locker.ObtainKey(result.buffer, result.offset + i * 4);
if (!k) {
return {ParseResult::AbnormalFlow, parse_info};
}
u32 value = *k;
u32 target = static_cast<u32>((value >> 3) + pc_target);
insert_label(state, target);
branches.emplace_back(value, target);
}
parse_info.end_address = offset;
parse_info.branch_info = MakeBranchInfo<MultiBranch>(
static_cast<u32>(instr.gpr8.Value()), std::move(branches));
return {ParseResult::ControlCaught, parse_info};
} else {
LOG_WARNING(HW_GPU, "BRX Track Unsuccesful");
}
return {ParseResult::AbnormalFlow, parse_info};
}
default:
@ -306,10 +451,13 @@ std::pair<ParseResult, ParseInfo> ParseCode(CFGRebuildState& state, u32 address)
offset++;
}
parse_info.branch_info.kill = false;
parse_info.branch_info.is_sync = false;
parse_info.branch_info.is_brk = false;
single_branch.kill = false;
single_branch.is_sync = false;
single_branch.is_brk = false;
parse_info.end_address = offset - 1;
parse_info.branch_info = MakeBranchInfo<SingleBranch>(
single_branch.condition, single_branch.address, single_branch.kill, single_branch.is_sync,
single_branch.is_brk, single_branch.ignore);
return {ParseResult::BlockEnd, parse_info};
}
@ -333,9 +481,10 @@ bool TryInspectAddress(CFGRebuildState& state) {
BlockInfo& current_block = state.block_info[block_index];
current_block.end = address - 1;
new_block.branch = current_block.branch;
BlockBranchInfo forward_branch{};
forward_branch.address = address;
forward_branch.ignore = true;
BlockBranchInfo forward_branch = MakeBranchInfo<SingleBranch>();
const auto branch = std::get_if<SingleBranch>(forward_branch.get());
branch->address = address;
branch->ignore = true;
current_block.branch = forward_branch;
return true;
}
@ -350,14 +499,17 @@ bool TryInspectAddress(CFGRebuildState& state) {
BlockInfo& block_info = CreateBlockInfo(state, address, parse_info.end_address);
block_info.branch = parse_info.branch_info;
if (parse_info.branch_info.condition.IsUnconditional()) {
if (std::holds_alternative<SingleBranch>(*block_info.branch)) {
const auto branch = std::get_if<SingleBranch>(block_info.branch.get());
if (branch->condition.IsUnconditional()) {
return true;
}
const u32 fallthrough_address = parse_info.end_address + 1;
state.inspect_queries.push_front(fallthrough_address);
return true;
}
return true;
}
bool TryQuery(CFGRebuildState& state) {
const auto gather_labels = [](std::stack<u32>& cc, std::map<u32, u32>& labels,
@ -393,31 +545,42 @@ bool TryQuery(CFGRebuildState& state) {
state.queries.pop_front();
gather_labels(q2.ssy_stack, state.ssy_labels, block);
gather_labels(q2.pbk_stack, state.pbk_labels, block);
if (!block.branch.condition.IsUnconditional()) {
if (std::holds_alternative<SingleBranch>(*block.branch)) {
const auto branch = std::get_if<SingleBranch>(block.branch.get());
if (!branch->condition.IsUnconditional()) {
q2.address = block.end + 1;
state.queries.push_back(q2);
}
Query conditional_query{q2};
if (block.branch.is_sync) {
if (block.branch.address == unassigned_branch) {
block.branch.address = conditional_query.ssy_stack.top();
if (branch->is_sync) {
if (branch->address == unassigned_branch) {
branch->address = conditional_query.ssy_stack.top();
}
conditional_query.ssy_stack.pop();
}
if (block.branch.is_brk) {
if (block.branch.address == unassigned_branch) {
block.branch.address = conditional_query.pbk_stack.top();
if (branch->is_brk) {
if (branch->address == unassigned_branch) {
branch->address = conditional_query.pbk_stack.top();
}
conditional_query.pbk_stack.pop();
}
conditional_query.address = block.branch.address;
conditional_query.address = branch->address;
state.queries.push_back(std::move(conditional_query));
return true;
}
const auto multi_branch = std::get_if<MultiBranch>(block.branch.get());
for (const auto& branch_case : multi_branch->branches) {
Query conditional_query{q2};
conditional_query.address = branch_case.address;
state.queries.push_back(std::move(conditional_query));
}
return true;
}
} // Anonymous namespace
void InsertBranch(ASTManager& mm, const BlockBranchInfo& branch) {
void InsertBranch(ASTManager& mm, const BlockBranchInfo& branch_info) {
const auto get_expr = ([&](const Condition& cond) -> Expr {
Expr result{};
if (cond.cc != ConditionCode::T) {
@ -444,15 +607,24 @@ void InsertBranch(ASTManager& mm, const BlockBranchInfo& branch) {
}
return MakeExpr<ExprBoolean>(true);
});
if (branch.address < 0) {
if (branch.kill) {
mm.InsertReturn(get_expr(branch.condition), true);
if (std::holds_alternative<SingleBranch>(*branch_info)) {
const auto branch = std::get_if<SingleBranch>(branch_info.get());
if (branch->address < 0) {
if (branch->kill) {
mm.InsertReturn(get_expr(branch->condition), true);
return;
}
mm.InsertReturn(get_expr(branch.condition), false);
mm.InsertReturn(get_expr(branch->condition), false);
return;
}
mm.InsertGoto(get_expr(branch.condition), branch.address);
mm.InsertGoto(get_expr(branch->condition), branch->address);
return;
}
const auto multi_branch = std::get_if<MultiBranch>(branch_info.get());
for (const auto& branch_case : multi_branch->branches) {
mm.InsertGoto(MakeExpr<ExprGprEqual>(multi_branch->gpr, branch_case.cmp_value),
branch_case.address);
}
}
void DecompileShader(CFGRebuildState& state) {
@ -464,25 +636,26 @@ void DecompileShader(CFGRebuildState& state) {
if (state.labels.count(block.start) != 0) {
state.manager->InsertLabel(block.start);
}
u32 end = block.branch.ignore ? block.end + 1 : block.end;
const bool ignore = BlockBranchIsIgnored(block.branch);
u32 end = ignore ? block.end + 1 : block.end;
state.manager->InsertBlock(block.start, end);
if (!block.branch.ignore) {
if (!ignore) {
InsertBranch(*state.manager, block.branch);
}
}
state.manager->Decompile();
}
std::unique_ptr<ShaderCharacteristics> ScanFlow(const ProgramCode& program_code,
std::size_t program_size, u32 start_address,
const CompilerSettings& settings) {
std::unique_ptr<ShaderCharacteristics> ScanFlow(const ProgramCode& program_code, u32 start_address,
const CompilerSettings& settings,
ConstBufferLocker& locker) {
auto result_out = std::make_unique<ShaderCharacteristics>();
if (settings.depth == CompileDepth::BruteForce) {
result_out->settings.depth = CompileDepth::BruteForce;
return result_out;
}
CFGRebuildState state{program_code, program_size, start_address};
CFGRebuildState state{program_code, start_address, locker};
// Inspect Code and generate blocks
state.labels.clear();
state.labels.emplace(start_address);
@ -547,11 +720,9 @@ std::unique_ptr<ShaderCharacteristics> ScanFlow(const ProgramCode& program_code,
ShaderBlock new_block{};
new_block.start = block.start;
new_block.end = block.end;
new_block.ignore_branch = block.branch.ignore;
new_block.ignore_branch = BlockBranchIsIgnored(block.branch);
if (!new_block.ignore_branch) {
new_block.branch.cond = block.branch.condition;
new_block.branch.kills = block.branch.kill;
new_block.branch.address = block.branch.address;
new_block.branch = block.branch;
}
result_out->end = std::max(result_out->end, block.end);
result_out->blocks.push_back(new_block);

View file

@ -7,6 +7,7 @@
#include <list>
#include <optional>
#include <set>
#include <variant>
#include "video_core/engines/shader_bytecode.h"
#include "video_core/shader/ast.h"
@ -37,29 +38,61 @@ struct Condition {
}
};
struct ShaderBlock {
struct Branch {
Condition cond{};
bool kills{};
s32 address{};
class SingleBranch {
public:
SingleBranch() = default;
SingleBranch(Condition condition, s32 address, bool kill, bool is_sync, bool is_brk,
bool ignore)
: condition{condition}, address{address}, kill{kill}, is_sync{is_sync}, is_brk{is_brk},
ignore{ignore} {}
bool operator==(const Branch& b) const {
return std::tie(cond, kills, address) == std::tie(b.cond, b.kills, b.address);
bool operator==(const SingleBranch& b) const {
return std::tie(condition, address, kill, is_sync, is_brk, ignore) ==
std::tie(b.condition, b.address, b.kill, b.is_sync, b.is_brk, b.ignore);
}
bool operator!=(const Branch& b) const {
bool operator!=(const SingleBranch& b) const {
return !operator==(b);
}
Condition condition{};
s32 address{exit_branch};
bool kill{};
bool is_sync{};
bool is_brk{};
bool ignore{};
};
struct CaseBranch {
CaseBranch(u32 cmp_value, u32 address) : cmp_value{cmp_value}, address{address} {}
u32 cmp_value;
u32 address;
};
class MultiBranch {
public:
MultiBranch(u32 gpr, std::vector<CaseBranch>&& branches)
: gpr{gpr}, branches{std::move(branches)} {}
u32 gpr{};
std::vector<CaseBranch> branches{};
};
using BranchData = std::variant<SingleBranch, MultiBranch>;
using BlockBranchInfo = std::shared_ptr<BranchData>;
bool BlockBranchInfoAreEqual(BlockBranchInfo first, BlockBranchInfo second);
struct ShaderBlock {
u32 start{};
u32 end{};
bool ignore_branch{};
Branch branch{};
BlockBranchInfo branch{};
bool operator==(const ShaderBlock& sb) const {
return std::tie(start, end, ignore_branch, branch) ==
std::tie(sb.start, sb.end, sb.ignore_branch, sb.branch);
return std::tie(start, end, ignore_branch) ==
std::tie(sb.start, sb.end, sb.ignore_branch) &&
BlockBranchInfoAreEqual(branch, sb.branch);
}
bool operator!=(const ShaderBlock& sb) const {
@ -76,8 +109,8 @@ struct ShaderCharacteristics {
CompilerSettings settings{};
};
std::unique_ptr<ShaderCharacteristics> ScanFlow(const ProgramCode& program_code,
std::size_t program_size, u32 start_address,
const CompilerSettings& settings);
std::unique_ptr<ShaderCharacteristics> ScanFlow(const ProgramCode& program_code, u32 start_address,
const CompilerSettings& settings,
ConstBufferLocker& locker);
} // namespace VideoCommon::Shader

View file

@ -33,7 +33,7 @@ constexpr bool IsSchedInstruction(u32 offset, u32 main_offset) {
return (absolute_offset % SchedPeriod) == 0;
}
} // namespace
} // Anonymous namespace
class ASTDecoder {
public:
@ -102,7 +102,7 @@ void ShaderIR::Decode() {
std::memcpy(&header, program_code.data(), sizeof(Tegra::Shader::Header));
decompiled = false;
auto info = ScanFlow(program_code, program_size, main_offset, settings);
auto info = ScanFlow(program_code, main_offset, settings, locker);
auto& shader_info = *info;
coverage_begin = shader_info.start;
coverage_end = shader_info.end;
@ -155,7 +155,7 @@ void ShaderIR::Decode() {
[[fallthrough]];
case CompileDepth::BruteForce: {
coverage_begin = main_offset;
const u32 shader_end = static_cast<u32>(program_size / sizeof(u64));
const std::size_t shader_end = program_code.size();
coverage_end = shader_end;
for (u32 label = main_offset; label < shader_end; label++) {
basic_blocks.insert({label, DecodeRange(label, label + 1)});
@ -198,24 +198,39 @@ void ShaderIR::InsertControlFlow(NodeBlock& bb, const ShaderBlock& block) {
}
return result;
};
if (block.branch.address < 0) {
if (block.branch.kills) {
if (std::holds_alternative<SingleBranch>(*block.branch)) {
auto branch = std::get_if<SingleBranch>(block.branch.get());
if (branch->address < 0) {
if (branch->kill) {
Node n = Operation(OperationCode::Discard);
n = apply_conditions(block.branch.cond, n);
n = apply_conditions(branch->condition, n);
bb.push_back(n);
global_code.push_back(n);
return;
}
Node n = Operation(OperationCode::Exit);
n = apply_conditions(block.branch.cond, n);
n = apply_conditions(branch->condition, n);
bb.push_back(n);
global_code.push_back(n);
return;
}
Node n = Operation(OperationCode::Branch, Immediate(block.branch.address));
n = apply_conditions(block.branch.cond, n);
Node n = Operation(OperationCode::Branch, Immediate(branch->address));
n = apply_conditions(branch->condition, n);
bb.push_back(n);
global_code.push_back(n);
return;
}
auto multi_branch = std::get_if<MultiBranch>(block.branch.get());
Node op_a = GetRegister(multi_branch->gpr);
for (auto& branch_case : multi_branch->branches) {
Node n = Operation(OperationCode::Branch, Immediate(branch_case.address));
Node op_b = Immediate(branch_case.cmp_value);
Node condition =
GetPredicateComparisonInteger(Tegra::Shader::PredCondition::Equal, false, op_a, op_b);
auto result = Conditional(condition, {n});
bb.push_back(result);
global_code.push_back(result);
}
}
u32 ShaderIR::DecodeInstr(NodeBlock& bb, u32 pc) {

View file

@ -141,7 +141,7 @@ u32 ShaderIR::DecodeTexture(NodeBlock& bb, u32 pc) {
const Node component = Immediate(static_cast<u32>(instr.tld4s.component));
const auto& sampler =
GetSampler(instr.sampler, TextureType::Texture2D, false, depth_compare);
GetSampler(instr.sampler, {{TextureType::Texture2D, false, depth_compare}});
Node4 values;
for (u32 element = 0; element < values.size(); ++element) {
@ -165,10 +165,7 @@ u32 ShaderIR::DecodeTexture(NodeBlock& bb, u32 pc) {
// Sadly, not all texture instructions specify the type of texture their sampler
// uses. This must be fixed at a later instance.
const auto& sampler =
is_bindless
? GetBindlessSampler(instr.gpr8, Tegra::Shader::TextureType::Texture2D, false,
false)
: GetSampler(instr.sampler, Tegra::Shader::TextureType::Texture2D, false, false);
is_bindless ? GetBindlessSampler(instr.gpr8, {}) : GetSampler(instr.sampler, {});
u32 indexer = 0;
switch (instr.txq.query_type) {
@ -207,9 +204,9 @@ u32 ShaderIR::DecodeTexture(NodeBlock& bb, u32 pc) {
auto texture_type = instr.tmml.texture_type.Value();
const bool is_array = instr.tmml.array != 0;
const auto& sampler = is_bindless
? GetBindlessSampler(instr.gpr20, texture_type, is_array, false)
: GetSampler(instr.sampler, texture_type, is_array, false);
const auto& sampler =
is_bindless ? GetBindlessSampler(instr.gpr20, {{texture_type, is_array, false}})
: GetSampler(instr.sampler, {{texture_type, is_array, false}});
std::vector<Node> coords;
@ -285,9 +282,26 @@ u32 ShaderIR::DecodeTexture(NodeBlock& bb, u32 pc) {
return pc;
}
const Sampler& ShaderIR::GetSampler(const Tegra::Shader::Sampler& sampler, TextureType type,
bool is_array, bool is_shadow) {
const auto offset = static_cast<std::size_t>(sampler.index.Value());
const Sampler& ShaderIR::GetSampler(const Tegra::Shader::Sampler& sampler,
std::optional<SamplerInfo> sampler_info) {
const auto offset = static_cast<u32>(sampler.index.Value());
Tegra::Shader::TextureType type;
bool is_array;
bool is_shadow;
if (sampler_info) {
type = sampler_info->type;
is_array = sampler_info->is_array;
is_shadow = sampler_info->is_shadow;
} else if (auto sampler = locker.ObtainBoundSampler(offset); sampler) {
type = sampler->texture_type.Value();
is_array = sampler->is_array.Value() != 0;
is_shadow = sampler->is_shadow.Value() != 0;
} else {
type = Tegra::Shader::TextureType::Texture2D;
is_array = false;
is_shadow = false;
}
// If this sampler has already been used, return the existing mapping.
const auto itr =
@ -303,15 +317,31 @@ const Sampler& ShaderIR::GetSampler(const Tegra::Shader::Sampler& sampler, Textu
const std::size_t next_index = used_samplers.size();
const Sampler entry{offset, next_index, type, is_array, is_shadow};
return *used_samplers.emplace(entry).first;
}
} // namespace VideoCommon::Shader
const Sampler& ShaderIR::GetBindlessSampler(const Tegra::Shader::Register& reg, TextureType type,
bool is_array, bool is_shadow) {
const Sampler& ShaderIR::GetBindlessSampler(const Tegra::Shader::Register& reg,
std::optional<SamplerInfo> sampler_info) {
const Node sampler_register = GetRegister(reg);
const auto [base_sampler, cbuf_index, cbuf_offset] =
TrackCbuf(sampler_register, global_code, static_cast<s64>(global_code.size()));
ASSERT(base_sampler != nullptr);
const auto cbuf_key = (static_cast<u64>(cbuf_index) << 32) | static_cast<u64>(cbuf_offset);
Tegra::Shader::TextureType type;
bool is_array;
bool is_shadow;
if (sampler_info) {
type = sampler_info->type;
is_array = sampler_info->is_array;
is_shadow = sampler_info->is_shadow;
} else if (auto sampler = locker.ObtainBindlessSampler(cbuf_index, cbuf_offset); sampler) {
type = sampler->texture_type.Value();
is_array = sampler->is_array.Value() != 0;
is_shadow = sampler->is_shadow.Value() != 0;
} else {
type = Tegra::Shader::TextureType::Texture2D;
is_array = false;
is_shadow = false;
}
// If this sampler has already been used, return the existing mapping.
const auto itr =
@ -411,9 +441,9 @@ Node4 ShaderIR::GetTextureCode(Instruction instr, TextureType texture_type,
(texture_type == TextureType::TextureCube && is_array && is_shadow),
"This method is not supported.");
const auto& sampler = is_bindless
? GetBindlessSampler(*bindless_reg, texture_type, is_array, is_shadow)
: GetSampler(instr.sampler, texture_type, is_array, is_shadow);
const auto& sampler =
is_bindless ? GetBindlessSampler(*bindless_reg, {{texture_type, is_array, is_shadow}})
: GetSampler(instr.sampler, {{texture_type, is_array, is_shadow}});
const bool lod_needed = process_mode == TextureProcessMode::LZ ||
process_mode == TextureProcessMode::LL ||
@ -577,7 +607,7 @@ Node4 ShaderIR::GetTld4Code(Instruction instr, TextureType texture_type, bool de
dc = GetRegister(parameter_register++);
}
const auto& sampler = GetSampler(instr.sampler, texture_type, is_array, depth_compare);
const auto& sampler = GetSampler(instr.sampler, {{texture_type, is_array, depth_compare}});
Node4 values;
for (u32 element = 0; element < values.size(); ++element) {
@ -610,7 +640,7 @@ Node4 ShaderIR::GetTldCode(Tegra::Shader::Instruction instr) {
// const Node aoffi_register{is_aoffi ? GetRegister(gpr20_cursor++) : nullptr};
// const Node multisample{is_multisample ? GetRegister(gpr20_cursor++) : nullptr};
const auto& sampler = GetSampler(instr.sampler, texture_type, is_array, false);
const auto& sampler = GetSampler(instr.sampler, {{texture_type, is_array, false}});
Node4 values;
for (u32 element = 0; element < values.size(); ++element) {
@ -646,7 +676,7 @@ Node4 ShaderIR::GetTldsCode(Instruction instr, TextureType texture_type, bool is
// When lod is used always is in gpr20
const Node lod = lod_enabled ? GetRegister(instr.gpr20) : Immediate(0);
const auto& sampler = GetSampler(instr.sampler, texture_type, is_array, false);
const auto& sampler = GetSampler(instr.sampler, {{texture_type, is_array, false}});
Node4 values;
for (u32 element = 0; element < values.size(); ++element) {

View file

@ -17,13 +17,14 @@ using Tegra::Shader::Pred;
class ExprAnd;
class ExprBoolean;
class ExprCondCode;
class ExprGprEqual;
class ExprNot;
class ExprOr;
class ExprPredicate;
class ExprVar;
using ExprData =
std::variant<ExprVar, ExprCondCode, ExprPredicate, ExprNot, ExprOr, ExprAnd, ExprBoolean>;
using ExprData = std::variant<ExprVar, ExprCondCode, ExprPredicate, ExprNot, ExprOr, ExprAnd,
ExprBoolean, ExprGprEqual>;
using Expr = std::shared_ptr<ExprData>;
class ExprAnd final {
@ -118,6 +119,22 @@ public:
bool value;
};
class ExprGprEqual final {
public:
ExprGprEqual(u32 gpr, u32 value) : gpr{gpr}, value{value} {}
bool operator==(const ExprGprEqual& b) const {
return gpr == b.gpr && value == b.value;
}
bool operator!=(const ExprGprEqual& b) const {
return !operator==(b);
}
u32 gpr;
u32 value;
};
template <typename T, typename... Args>
Expr MakeExpr(Args&&... args) {
static_assert(std::is_convertible_v<T, ExprData>);

View file

@ -23,10 +23,9 @@ using Tegra::Shader::PredCondition;
using Tegra::Shader::PredOperation;
using Tegra::Shader::Register;
ShaderIR::ShaderIR(const ProgramCode& program_code, u32 main_offset, const std::size_t size,
CompilerSettings settings)
: program_code{program_code}, main_offset{main_offset}, program_size{size}, basic_blocks{},
program_manager{true, true}, settings{settings} {
ShaderIR::ShaderIR(const ProgramCode& program_code, u32 main_offset, CompilerSettings settings,
ConstBufferLocker& locker)
: program_code{program_code}, main_offset{main_offset}, settings{settings}, locker{locker} {
Decode();
}

View file

@ -17,6 +17,7 @@
#include "video_core/engines/shader_header.h"
#include "video_core/shader/ast.h"
#include "video_core/shader/compiler_settings.h"
#include "video_core/shader/const_buffer_locker.h"
#include "video_core/shader/node.h"
namespace VideoCommon::Shader {
@ -66,8 +67,8 @@ struct GlobalMemoryUsage {
class ShaderIR final {
public:
explicit ShaderIR(const ProgramCode& program_code, u32 main_offset, std::size_t size,
CompilerSettings settings);
explicit ShaderIR(const ProgramCode& program_code, u32 main_offset, CompilerSettings settings,
ConstBufferLocker& locker);
~ShaderIR();
const std::map<u32, NodeBlock>& GetBasicBlocks() const {
@ -172,6 +173,13 @@ public:
private:
friend class ASTDecoder;
struct SamplerInfo {
Tegra::Shader::TextureType type;
bool is_array;
bool is_shadow;
};
void Decode();
NodeBlock DecodeRange(u32 begin, u32 end);
@ -296,12 +304,11 @@ private:
/// Accesses a texture sampler
const Sampler& GetSampler(const Tegra::Shader::Sampler& sampler,
Tegra::Shader::TextureType type, bool is_array, bool is_shadow);
std::optional<SamplerInfo> sampler_info);
// Accesses a texture sampler for a bindless texture.
const Sampler& GetBindlessSampler(const Tegra::Shader::Register& reg,
Tegra::Shader::TextureType type, bool is_array,
bool is_shadow);
std::optional<SamplerInfo> sampler_info);
/// Accesses an image.
Image& GetImage(Tegra::Shader::Image image, Tegra::Shader::ImageType type);
@ -377,7 +384,9 @@ private:
const ProgramCode& program_code;
const u32 main_offset;
const std::size_t program_size;
const CompilerSettings settings;
ConstBufferLocker& locker;
bool decompiled{};
bool disable_flow_stack{};
@ -386,8 +395,7 @@ private:
std::map<u32, NodeBlock> basic_blocks;
NodeBlock global_code;
ASTManager program_manager;
CompilerSettings settings{};
ASTManager program_manager{true, true};
std::set<u32> used_registers;
std::set<Tegra::Shader::Pred> used_predicates;