yuzu-fork/src/common/x64/native_clock.cpp

104 lines
3.2 KiB
C++
Raw Normal View History

// Copyright 2020 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <chrono>
2020-06-27 23:20:06 +01:00
#include <mutex>
#include <thread>
#ifdef _MSC_VER
#include <intrin.h>
#else
#include <x86intrin.h>
#endif
#include "common/uint128.h"
#include "common/x64/native_clock.h"
namespace Common {
u64 EstimateRDTSCFrequency() {
const auto milli_10 = std::chrono::milliseconds{10};
// get current time
_mm_mfence();
const u64 tscStart = __rdtsc();
const auto startTime = std::chrono::high_resolution_clock::now();
// wait roughly 3 seconds
while (true) {
auto milli = std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::high_resolution_clock::now() - startTime);
if (milli.count() >= 3000)
break;
std::this_thread::sleep_for(milli_10);
}
const auto endTime = std::chrono::high_resolution_clock::now();
_mm_mfence();
const u64 tscEnd = __rdtsc();
// calculate difference
const u64 timer_diff =
std::chrono::duration_cast<std::chrono::nanoseconds>(endTime - startTime).count();
const u64 tsc_diff = tscEnd - tscStart;
const u64 tsc_freq = MultiplyAndDivide64(tsc_diff, 1000000000ULL, timer_diff);
return tsc_freq;
}
namespace X64 {
NativeClock::NativeClock(u64 emulated_cpu_frequency_, u64 emulated_clock_frequency_,
u64 rtsc_frequency_)
: WallClock(emulated_cpu_frequency_, emulated_clock_frequency_, true), rtsc_frequency{
rtsc_frequency_} {
_mm_mfence();
last_measure = __rdtsc();
accumulated_ticks = 0U;
}
u64 NativeClock::GetRTSC() {
2020-06-27 23:20:06 +01:00
std::scoped_lock scope{rtsc_serialize};
_mm_mfence();
const u64 current_measure = __rdtsc();
u64 diff = current_measure - last_measure;
diff = diff & ~static_cast<u64>(static_cast<s64>(diff) >> 63); // max(diff, 0)
if (current_measure > last_measure) {
last_measure = current_measure;
}
accumulated_ticks += diff;
/// The clock cannot be more precise than the guest timer, remove the lower bits
return accumulated_ticks & inaccuracy_mask;
}
void NativeClock::Pause(bool is_paused) {
if (!is_paused) {
_mm_mfence();
last_measure = __rdtsc();
}
}
std::chrono::nanoseconds NativeClock::GetTimeNS() {
const u64 rtsc_value = GetRTSC();
return std::chrono::nanoseconds{MultiplyAndDivide64(rtsc_value, 1000000000, rtsc_frequency)};
}
std::chrono::microseconds NativeClock::GetTimeUS() {
const u64 rtsc_value = GetRTSC();
return std::chrono::microseconds{MultiplyAndDivide64(rtsc_value, 1000000, rtsc_frequency)};
}
std::chrono::milliseconds NativeClock::GetTimeMS() {
const u64 rtsc_value = GetRTSC();
return std::chrono::milliseconds{MultiplyAndDivide64(rtsc_value, 1000, rtsc_frequency)};
}
u64 NativeClock::GetClockCycles() {
const u64 rtsc_value = GetRTSC();
return MultiplyAndDivide64(rtsc_value, emulated_clock_frequency, rtsc_frequency);
}
u64 NativeClock::GetCPUCycles() {
const u64 rtsc_value = GetRTSC();
return MultiplyAndDivide64(rtsc_value, emulated_cpu_frequency, rtsc_frequency);
}
} // namespace X64
} // namespace Common