nc-photos/plugin/android/src/main/cpp/lib/spline/spline.cpp
2022-07-24 22:01:46 +08:00

763 lines
24 KiB
C++

#include "./spline.h"
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstdio>
#include <sstream>
#include <string>
#include <vector>
namespace {
// band matrix solver
class band_matrix {
private:
std::vector<std::vector<double>> m_upper; // upper band
std::vector<std::vector<double>> m_lower; // lower band
public:
band_matrix(){}; // constructor
band_matrix(int dim, int n_u, int n_l); // constructor
~band_matrix(){}; // destructor
void resize(int dim, int n_u, int n_l); // init with dim,n_u,n_l
int dim() const; // matrix dimension
int num_upper() const { return (int)m_upper.size() - 1; }
int num_lower() const { return (int)m_lower.size() - 1; }
// access operator
double &operator()(int i, int j); // write
double operator()(int i, int j) const; // read
// we can store an additional diagonal (in m_lower)
double &saved_diag(int i);
double saved_diag(int i) const;
void lu_decompose();
std::vector<double> r_solve(const std::vector<double> &b) const;
std::vector<double> l_solve(const std::vector<double> &b) const;
std::vector<double> lu_solve(const std::vector<double> &b,
bool is_lu_decomposed = false);
};
double get_eps();
std::vector<double> solve_cubic(double a, double b, double c, double d,
int newton_iter = 0);
} // namespace
namespace tk {
void spline::set_boundary(spline::bd_type left, double left_value,
spline::bd_type right, double right_value) {
assert(m_x.size() == 0); // set_points() must not have happened yet
m_left = left;
m_right = right;
m_left_value = left_value;
m_right_value = right_value;
}
void spline::set_coeffs_from_b() {
assert(m_x.size() == m_y.size());
assert(m_x.size() == m_b.size());
assert(m_x.size() > 2);
size_t n = m_b.size();
if (m_c.size() != n)
m_c.resize(n);
if (m_d.size() != n)
m_d.resize(n);
for (size_t i = 0; i < n - 1; i++) {
const double h = m_x[i + 1] - m_x[i];
// from continuity and differentiability condition
m_c[i] =
(3.0 * (m_y[i + 1] - m_y[i]) / h - (2.0 * m_b[i] + m_b[i + 1])) / h;
// from differentiability condition
m_d[i] = ((m_b[i + 1] - m_b[i]) / (3.0 * h) - 2.0 / 3.0 * m_c[i]) / h;
}
// for left extrapolation coefficients
m_c0 = (m_left == first_deriv) ? 0.0 : m_c[0];
}
void spline::set_points(const std::vector<double> &x,
const std::vector<double> &y, spline_type type) {
assert(x.size() == y.size());
assert(x.size() >= 3);
// not-a-knot with 3 points has many solutions
if (m_left == not_a_knot || m_right == not_a_knot)
assert(x.size() >= 4);
m_type = type;
m_made_monotonic = false;
m_x = x;
m_y = y;
int n = (int)x.size();
// check strict monotonicity of input vector x
for (int i = 0; i < n - 1; i++) {
assert(m_x[i] < m_x[i + 1]);
}
if (type == linear) {
// linear interpolation
m_d.resize(n);
m_c.resize(n);
m_b.resize(n);
for (int i = 0; i < n - 1; i++) {
m_d[i] = 0.0;
m_c[i] = 0.0;
m_b[i] = (m_y[i + 1] - m_y[i]) / (m_x[i + 1] - m_x[i]);
}
// ignore boundary conditions, set slope equal to the last segment
m_b[n - 1] = m_b[n - 2];
m_c[n - 1] = 0.0;
m_d[n - 1] = 0.0;
} else if (type == cspline) {
// classical cubic splines which are C^2 (twice cont differentiable)
// this requires solving an equation system
// setting up the matrix and right hand side of the equation system
// for the parameters b[]
int n_upper = (m_left == spline::not_a_knot) ? 2 : 1;
int n_lower = (m_right == spline::not_a_knot) ? 2 : 1;
band_matrix A(n, n_upper, n_lower);
std::vector<double> rhs(n);
for (int i = 1; i < n - 1; i++) {
A(i, i - 1) = 1.0 / 3.0 * (x[i] - x[i - 1]);
A(i, i) = 2.0 / 3.0 * (x[i + 1] - x[i - 1]);
A(i, i + 1) = 1.0 / 3.0 * (x[i + 1] - x[i]);
rhs[i] = (y[i + 1] - y[i]) / (x[i + 1] - x[i]) -
(y[i] - y[i - 1]) / (x[i] - x[i - 1]);
}
// boundary conditions
if (m_left == spline::second_deriv) {
// 2*c[0] = f''
A(0, 0) = 2.0;
A(0, 1) = 0.0;
rhs[0] = m_left_value;
} else if (m_left == spline::first_deriv) {
// b[0] = f', needs to be re-expressed in terms of c:
// (2c[0]+c[1])(x[1]-x[0]) = 3 ((y[1]-y[0])/(x[1]-x[0]) - f')
A(0, 0) = 2.0 * (x[1] - x[0]);
A(0, 1) = 1.0 * (x[1] - x[0]);
rhs[0] = 3.0 * ((y[1] - y[0]) / (x[1] - x[0]) - m_left_value);
} else if (m_left == spline::not_a_knot) {
// f'''(x[1]) exists, i.e. d[0]=d[1], or re-expressed in c:
// -h1*c[0] + (h0+h1)*c[1] - h0*c[2] = 0
A(0, 0) = -(x[2] - x[1]);
A(0, 1) = x[2] - x[0];
A(0, 2) = -(x[1] - x[0]);
rhs[0] = 0.0;
} else {
assert(false);
}
if (m_right == spline::second_deriv) {
// 2*c[n-1] = f''
A(n - 1, n - 1) = 2.0;
A(n - 1, n - 2) = 0.0;
rhs[n - 1] = m_right_value;
} else if (m_right == spline::first_deriv) {
// b[n-1] = f', needs to be re-expressed in terms of c:
// (c[n-2]+2c[n-1])(x[n-1]-x[n-2])
// = 3 (f' - (y[n-1]-y[n-2])/(x[n-1]-x[n-2]))
A(n - 1, n - 1) = 2.0 * (x[n - 1] - x[n - 2]);
A(n - 1, n - 2) = 1.0 * (x[n - 1] - x[n - 2]);
rhs[n - 1] =
3.0 * (m_right_value - (y[n - 1] - y[n - 2]) / (x[n - 1] - x[n - 2]));
} else if (m_right == spline::not_a_knot) {
// f'''(x[n-2]) exists, i.e. d[n-3]=d[n-2], or re-expressed in c:
// -h_{n-2}*c[n-3] + (h_{n-3}+h_{n-2})*c[n-2] - h_{n-3}*c[n-1] = 0
A(n - 1, n - 3) = -(x[n - 1] - x[n - 2]);
A(n - 1, n - 2) = x[n - 1] - x[n - 3];
A(n - 1, n - 1) = -(x[n - 2] - x[n - 3]);
rhs[0] = 0.0;
} else {
assert(false);
}
// solve the equation system to obtain the parameters c[]
m_c = A.lu_solve(rhs);
// calculate parameters b[] and d[] based on c[]
m_d.resize(n);
m_b.resize(n);
for (int i = 0; i < n - 1; i++) {
m_d[i] = 1.0 / 3.0 * (m_c[i + 1] - m_c[i]) / (x[i + 1] - x[i]);
m_b[i] = (y[i + 1] - y[i]) / (x[i + 1] - x[i]) -
1.0 / 3.0 * (2.0 * m_c[i] + m_c[i + 1]) * (x[i + 1] - x[i]);
}
// for the right extrapolation coefficients (zero cubic term)
// f_{n-1}(x) = y_{n-1} + b*(x-x_{n-1}) + c*(x-x_{n-1})^2
double h = x[n - 1] - x[n - 2];
// m_c[n-1] is determined by the boundary condition
m_d[n - 1] = 0.0;
m_b[n - 1] = 3.0 * m_d[n - 2] * h * h + 2.0 * m_c[n - 2] * h +
m_b[n - 2]; // = f'_{n-2}(x_{n-1})
if (m_right == first_deriv)
m_c[n - 1] = 0.0; // force linear extrapolation
} else if (type == cspline_hermite) {
// hermite cubic splines which are C^1 (cont. differentiable)
// and derivatives are specified on each grid point
// (here we use 3-point finite differences)
m_b.resize(n);
m_c.resize(n);
m_d.resize(n);
// set b to match 1st order derivative finite difference
for (int i = 1; i < n - 1; i++) {
const double h = m_x[i + 1] - m_x[i];
const double hl = m_x[i] - m_x[i - 1];
m_b[i] = -h / (hl * (hl + h)) * m_y[i - 1] +
(h - hl) / (hl * h) * m_y[i] + hl / (h * (hl + h)) * m_y[i + 1];
}
// boundary conditions determine b[0] and b[n-1]
if (m_left == first_deriv) {
m_b[0] = m_left_value;
} else if (m_left == second_deriv) {
const double h = m_x[1] - m_x[0];
m_b[0] = 0.5 *
(-m_b[1] - 0.5 * m_left_value * h + 3.0 * (m_y[1] - m_y[0]) / h);
} else if (m_left == not_a_knot) {
// f''' continuous at x[1]
const double h0 = m_x[1] - m_x[0];
const double h1 = m_x[2] - m_x[1];
m_b[0] = -m_b[1] + 2.0 * (m_y[1] - m_y[0]) / h0 +
h0 * h0 / (h1 * h1) *
(m_b[1] + m_b[2] - 2.0 * (m_y[2] - m_y[1]) / h1);
} else {
assert(false);
}
if (m_right == first_deriv) {
m_b[n - 1] = m_right_value;
m_c[n - 1] = 0.0;
} else if (m_right == second_deriv) {
const double h = m_x[n - 1] - m_x[n - 2];
m_b[n - 1] = 0.5 * (-m_b[n - 2] + 0.5 * m_right_value * h +
3.0 * (m_y[n - 1] - m_y[n - 2]) / h);
m_c[n - 1] = 0.5 * m_right_value;
} else if (m_right == not_a_knot) {
// f''' continuous at x[n-2]
const double h0 = m_x[n - 2] - m_x[n - 3];
const double h1 = m_x[n - 1] - m_x[n - 2];
m_b[n - 1] =
-m_b[n - 2] + 2.0 * (m_y[n - 1] - m_y[n - 2]) / h1 +
h1 * h1 / (h0 * h0) *
(m_b[n - 3] + m_b[n - 2] - 2.0 * (m_y[n - 2] - m_y[n - 3]) / h0);
// f'' continuous at x[n-1]: c[n-1] = 3*d[n-2]*h[n-2] + c[n-1]
m_c[n - 1] = (m_b[n - 2] + 2.0 * m_b[n - 1]) / h1 -
3.0 * (m_y[n - 1] - m_y[n - 2]) / (h1 * h1);
} else {
assert(false);
}
m_d[n - 1] = 0.0;
// parameters c and d are determined by continuity and differentiability
set_coeffs_from_b();
} else {
assert(false);
}
// for left extrapolation coefficients
m_c0 = (m_left == first_deriv) ? 0.0 : m_c[0];
}
bool spline::make_monotonic() {
assert(m_x.size() == m_y.size());
assert(m_x.size() == m_b.size());
assert(m_x.size() > 2);
bool modified = false;
const int n = (int)m_x.size();
// make sure: input data monotonic increasing --> b_i>=0
// input data monotonic decreasing --> b_i<=0
for (int i = 0; i < n; i++) {
int im1 = std::max(i - 1, 0);
int ip1 = std::min(i + 1, n - 1);
if (((m_y[im1] <= m_y[i]) && (m_y[i] <= m_y[ip1]) && m_b[i] < 0.0) ||
((m_y[im1] >= m_y[i]) && (m_y[i] >= m_y[ip1]) && m_b[i] > 0.0)) {
modified = true;
m_b[i] = 0.0;
}
}
// if input data is monotonic (b[i], b[i+1], avg have all the same sign)
// ensure a sufficient criteria for monotonicity is satisfied:
// sqrt(b[i]^2+b[i+1]^2) <= 3 |avg|, with avg=(y[i+1]-y[i])/h,
for (int i = 0; i < n - 1; i++) {
double h = m_x[i + 1] - m_x[i];
double avg = (m_y[i + 1] - m_y[i]) / h;
if (avg == 0.0 && (m_b[i] != 0.0 || m_b[i + 1] != 0.0)) {
modified = true;
m_b[i] = 0.0;
m_b[i + 1] = 0.0;
} else if ((m_b[i] >= 0.0 && m_b[i + 1] >= 0.0 && avg > 0.0) ||
(m_b[i] <= 0.0 && m_b[i + 1] <= 0.0 && avg < 0.0)) {
// input data is monotonic
double r =
sqrt(m_b[i] * m_b[i] + m_b[i + 1] * m_b[i + 1]) / std::fabs(avg);
if (r > 3.0) {
// sufficient criteria for monotonicity: r<=3
// adjust b[i] and b[i+1]
modified = true;
m_b[i] *= (3.0 / r);
m_b[i + 1] *= (3.0 / r);
}
}
}
if (modified == true) {
set_coeffs_from_b();
m_made_monotonic = true;
}
return modified;
}
// return the closest idx so that m_x[idx] <= x (return 0 if x<m_x[0])
size_t spline::find_closest(double x) const {
std::vector<double>::const_iterator it;
it = std::upper_bound(m_x.begin(), m_x.end(), x); // *it > x
size_t idx = std::max(int(it - m_x.begin()) - 1, 0); // m_x[idx] <= x
return idx;
}
double spline::operator()(double x) const {
// polynomial evaluation using Horner's scheme
// TODO: consider more numerically accurate algorithms, e.g.:
// - Clenshaw
// - Even-Odd method by A.C.R. Newbery
// - Compensated Horner Scheme
size_t n = m_x.size();
size_t idx = find_closest(x);
double h = x - m_x[idx];
double interpol;
if (x < m_x[0]) {
// extrapolation to the left
interpol = (m_c0 * h + m_b[0]) * h + m_y[0];
} else if (x > m_x[n - 1]) {
// extrapolation to the right
interpol = (m_c[n - 1] * h + m_b[n - 1]) * h + m_y[n - 1];
} else {
// interpolation
interpol = ((m_d[idx] * h + m_c[idx]) * h + m_b[idx]) * h + m_y[idx];
}
return interpol;
}
double spline::deriv(int order, double x) const {
assert(order > 0);
size_t n = m_x.size();
size_t idx = find_closest(x);
double h = x - m_x[idx];
double interpol;
if (x < m_x[0]) {
// extrapolation to the left
switch (order) {
case 1:
interpol = 2.0 * m_c0 * h + m_b[0];
break;
case 2:
interpol = 2.0 * m_c0;
break;
default:
interpol = 0.0;
break;
}
} else if (x > m_x[n - 1]) {
// extrapolation to the right
switch (order) {
case 1:
interpol = 2.0 * m_c[n - 1] * h + m_b[n - 1];
break;
case 2:
interpol = 2.0 * m_c[n - 1];
break;
default:
interpol = 0.0;
break;
}
} else {
// interpolation
switch (order) {
case 1:
interpol = (3.0 * m_d[idx] * h + 2.0 * m_c[idx]) * h + m_b[idx];
break;
case 2:
interpol = 6.0 * m_d[idx] * h + 2.0 * m_c[idx];
break;
case 3:
interpol = 6.0 * m_d[idx];
break;
default:
interpol = 0.0;
break;
}
}
return interpol;
}
std::vector<double> spline::solve(double y, bool ignore_extrapolation) const {
std::vector<double> x; // roots for the entire spline
std::vector<double> root; // roots for each piecewise cubic
const size_t n = m_x.size();
// left extrapolation
if (ignore_extrapolation == false) {
root = solve_cubic(m_y[0] - y, m_b[0], m_c0, 0.0, 1);
for (size_t j = 0; j < root.size(); j++) {
if (root[j] < 0.0) {
x.push_back(m_x[0] + root[j]);
}
}
}
// brute force check if piecewise cubic has roots in their resp. segment
// TODO: make more efficient
for (size_t i = 0; i < n - 1; i++) {
root = solve_cubic(m_y[i] - y, m_b[i], m_c[i], m_d[i], 1);
for (size_t j = 0; j < root.size(); j++) {
double h = (i > 0) ? (m_x[i] - m_x[i - 1]) : 0.0;
double eps = get_eps() * 512.0 * std::min(h, 1.0);
if ((-eps <= root[j]) && (root[j] < m_x[i + 1] - m_x[i])) {
double new_root = m_x[i] + root[j];
if (x.size() > 0 && x.back() + eps > new_root) {
x.back() = new_root; // avoid spurious duplicate roots
} else {
x.push_back(new_root);
}
}
}
}
// right extrapolation
if (ignore_extrapolation == false) {
root = solve_cubic(m_y[n - 1] - y, m_b[n - 1], m_c[n - 1], 0.0, 1);
for (size_t j = 0; j < root.size(); j++) {
if (0.0 <= root[j]) {
x.push_back(m_x[n - 1] + root[j]);
}
}
}
return x;
};
std::string spline::info() const {
std::stringstream ss;
ss << "type " << m_type << ", left boundary deriv " << m_left << " = ";
ss << m_left_value << ", right boundary deriv " << m_right << " = ";
ss << m_right_value << std::endl;
if (m_made_monotonic) {
ss << "(spline has been adjusted for piece-wise monotonicity)";
}
return ss.str();
}
} // namespace tk
namespace {
// band_matrix implementation
// -------------------------
band_matrix::band_matrix(int dim, int n_u, int n_l) { resize(dim, n_u, n_l); }
void band_matrix::resize(int dim, int n_u, int n_l) {
assert(dim > 0);
assert(n_u >= 0);
assert(n_l >= 0);
m_upper.resize(n_u + 1);
m_lower.resize(n_l + 1);
for (size_t i = 0; i < m_upper.size(); i++) {
m_upper[i].resize(dim);
}
for (size_t i = 0; i < m_lower.size(); i++) {
m_lower[i].resize(dim);
}
}
int band_matrix::dim() const {
if (m_upper.size() > 0) {
return m_upper[0].size();
} else {
return 0;
}
}
// defines the new operator (), so that we can access the elements
// by A(i,j), index going from i=0,...,dim()-1
double &band_matrix::operator()(int i, int j) {
int k = j - i; // what band is the entry
assert((i >= 0) && (i < dim()) && (j >= 0) && (j < dim()));
assert((-num_lower() <= k) && (k <= num_upper()));
// k=0 -> diagonal, k<0 lower left part, k>0 upper right part
if (k >= 0)
return m_upper[k][i];
else
return m_lower[-k][i];
}
double band_matrix::operator()(int i, int j) const {
int k = j - i; // what band is the entry
assert((i >= 0) && (i < dim()) && (j >= 0) && (j < dim()));
assert((-num_lower() <= k) && (k <= num_upper()));
// k=0 -> diagonal, k<0 lower left part, k>0 upper right part
if (k >= 0)
return m_upper[k][i];
else
return m_lower[-k][i];
}
// second diag (used in LU decomposition), saved in m_lower
double band_matrix::saved_diag(int i) const {
assert((i >= 0) && (i < dim()));
return m_lower[0][i];
}
double &band_matrix::saved_diag(int i) {
assert((i >= 0) && (i < dim()));
return m_lower[0][i];
}
// LR-Decomposition of a band matrix
void band_matrix::lu_decompose() {
int i_max, j_max;
int j_min;
double x;
// preconditioning
// normalize column i so that a_ii=1
for (int i = 0; i < this->dim(); i++) {
assert(this->operator()(i, i) != 0.0);
this->saved_diag(i) = 1.0 / this->operator()(i, i);
j_min = std::max(0, i - this->num_lower());
j_max = std::min(this->dim() - 1, i + this->num_upper());
for (int j = j_min; j <= j_max; j++) {
this->operator()(i, j) *= this->saved_diag(i);
}
this->operator()(i, i) = 1.0; // prevents rounding errors
}
// Gauss LR-Decomposition
for (int k = 0; k < this->dim(); k++) {
i_max = std::min(this->dim() - 1,
k + this->num_lower()); // num_lower not a mistake!
for (int i = k + 1; i <= i_max; i++) {
assert(this->operator()(k, k) != 0.0);
x = -this->operator()(i, k) / this->operator()(k, k);
this->operator()(i, k) = -x; // assembly part of L
j_max = std::min(this->dim() - 1, k + this->num_upper());
for (int j = k + 1; j <= j_max; j++) {
// assembly part of R
this->operator()(i, j) =
this->operator()(i, j) + x * this->operator()(k, j);
}
}
}
}
// solves Ly=b
std::vector<double> band_matrix::l_solve(const std::vector<double> &b) const {
assert(this->dim() == (int)b.size());
std::vector<double> x(this->dim());
int j_start;
double sum;
for (int i = 0; i < this->dim(); i++) {
sum = 0;
j_start = std::max(0, i - this->num_lower());
for (int j = j_start; j < i; j++)
sum += this->operator()(i, j) * x[j];
x[i] = (b[i] * this->saved_diag(i)) - sum;
}
return x;
}
// solves Rx=y
std::vector<double> band_matrix::r_solve(const std::vector<double> &b) const {
assert(this->dim() == (int)b.size());
std::vector<double> x(this->dim());
int j_stop;
double sum;
for (int i = this->dim() - 1; i >= 0; i--) {
sum = 0;
j_stop = std::min(this->dim() - 1, i + this->num_upper());
for (int j = i + 1; j <= j_stop; j++)
sum += this->operator()(i, j) * x[j];
x[i] = (b[i] - sum) / this->operator()(i, i);
}
return x;
}
std::vector<double> band_matrix::lu_solve(const std::vector<double> &b,
bool is_lu_decomposed) {
assert(this->dim() == (int)b.size());
std::vector<double> x, y;
if (is_lu_decomposed == false) {
this->lu_decompose();
}
y = this->l_solve(b);
x = this->r_solve(y);
return x;
}
// machine precision of a double, i.e. the successor of 1 is 1+eps
double get_eps() {
// return std::numeric_limits<double>::epsilon(); // __DBL_EPSILON__
return 2.2204460492503131e-16; // 2^-52
}
// solutions for a + b*x = 0
std::vector<double> solve_linear(double a, double b) {
std::vector<double> x; // roots
if (b == 0.0) {
if (a == 0.0) {
// 0*x = 0
x.resize(1);
x[0] = 0.0; // any x solves it but we need to pick one
return x;
} else {
// 0*x + ... = 0, no solution
return x;
}
} else {
x.resize(1);
x[0] = -a / b;
return x;
}
}
// solutions for a + b*x + c*x^2 = 0
std::vector<double> solve_quadratic(double a, double b, double c,
int newton_iter = 0) {
if (c == 0.0) {
return solve_linear(a, b);
}
// rescale so that we solve x^2 + 2p x + q = (x+p)^2 + q - p^2 = 0
double p = 0.5 * b / c;
double q = a / c;
double discr = p * p - q;
const double eps = 0.5 * get_eps();
double discr_err = (6.0 * (p * p) + 3.0 * fabs(q) + fabs(discr)) * eps;
std::vector<double> x; // roots
if (fabs(discr) <= discr_err) {
// discriminant is zero --> one root
x.resize(1);
x[0] = -p;
} else if (discr < 0) {
// no root
} else {
// two roots
x.resize(2);
x[0] = -p - sqrt(discr);
x[1] = -p + sqrt(discr);
}
// improve solution via newton steps
for (size_t i = 0; i < x.size(); i++) {
for (int k = 0; k < newton_iter; k++) {
double f = (c * x[i] + b) * x[i] + a;
double f1 = 2.0 * c * x[i] + b;
// only adjust if slope is large enough
if (fabs(f1) > 1e-8) {
x[i] -= f / f1;
}
}
}
return x;
}
// solutions for the cubic equation: a + b*x +c*x^2 + d*x^3 = 0
// this is a naive implementation of the analytic solution without
// optimisation for speed or numerical accuracy
// newton_iter: number of newton iterations to improve analytical solution
// see also
// gsl: gsl_poly_solve_cubic() in solve_cubic.c
// octave: roots.m - via eigenvalues of the Frobenius companion matrix
std::vector<double> solve_cubic(double a, double b, double c, double d,
int newton_iter) {
if (d == 0.0) {
return solve_quadratic(a, b, c, newton_iter);
}
// convert to normalised form: a + bx + cx^2 + x^3 = 0
if (d != 1.0) {
a /= d;
b /= d;
c /= d;
}
// convert to depressed cubic: z^3 - 3pz - 2q = 0
// via substitution: z = x + c/3
std::vector<double> z; // roots of the depressed cubic
double p = -(1.0 / 3.0) * b + (1.0 / 9.0) * (c * c);
double r = 2.0 * (c * c) - 9.0 * b;
double q = -0.5 * a - (1.0 / 54.0) * (c * r);
double discr = p * p * p - q * q; // discriminant
// calculating numerical round-off errors with assumptions:
// - each operation is precise but each intermediate result x
// when stored has max error of x*eps
// - only multiplication with a power of 2 introduces no new error
// - a,b,c,d and some fractions (e.g. 1/3) have rounding errors eps
// - p_err << |p|, q_err << |q|, ... (this is violated in rare cases)
// would be more elegant to use boost::numeric::interval<double>
const double eps = get_eps();
double p_err =
eps * ((3.0 / 3.0) * fabs(b) + (4.0 / 9.0) * (c * c) + fabs(p));
double r_err = eps * (6.0 * (c * c) + 18.0 * fabs(b) + fabs(r));
double q_err = 0.5 * fabs(a) * eps +
(1.0 / 54.0) * fabs(c) * (r_err + fabs(r) * 3.0 * eps) +
fabs(q) * eps;
double discr_err = (p * p) * (3.0 * p_err + fabs(p) * 2.0 * eps) +
fabs(q) * (2.0 * q_err + fabs(q) * eps) +
fabs(discr) * eps;
// depending on the discriminant we get different solutions
if (fabs(discr) <= discr_err) {
// discriminant zero: one or two real roots
if (fabs(p) <= p_err) {
// p and q are zero: single root
z.resize(1);
z[0] = 0.0; // triple root
} else {
z.resize(2);
z[0] = 2.0 * q / p; // single root
z[1] = -0.5 * z[0]; // double root
}
} else if (discr > 0) {
// three real roots: via trigonometric solution
z.resize(3);
double ac = (1.0 / 3.0) * acos(q / (p * sqrt(p)));
double sq = 2.0 * sqrt(p);
z[0] = sq * cos(ac);
z[1] = sq * cos(ac - 2.0 * M_PI / 3.0);
z[2] = sq * cos(ac - 4.0 * M_PI / 3.0);
} else if (discr < 0.0) {
// single real root: via Cardano's fromula
z.resize(1);
double sgnq = (q >= 0 ? 1 : -1);
double basis = fabs(q) + sqrt(-discr);
double C = sgnq * pow(basis, 1.0 / 3.0); // c++11 has std::cbrt()
z[0] = C + p / C;
}
for (size_t i = 0; i < z.size(); i++) {
// convert depressed cubic roots to original cubic: x = z - c/3
z[i] -= (1.0 / 3.0) * c;
// improve solution via newton steps
for (int k = 0; k < newton_iter; k++) {
double f = ((z[i] + c) * z[i] + b) * z[i] + a;
double f1 = (3.0 * z[i] + 2.0 * c) * z[i] + b;
// only adjust if slope is large enough
if (fabs(f1) > 1e-8) {
z[i] -= f / f1;
}
}
}
// ensure if a=0 we get exactly x=0 as root
// TODO: remove this fudge
if (a == 0.0) {
assert(z.size() > 0); // cubic should always have at least one root
double xmin = fabs(z[0]);
size_t imin = 0;
for (size_t i = 1; i < z.size(); i++) {
if (xmin > fabs(z[i])) {
xmin = fabs(z[i]);
imin = i;
}
}
z[imin] = 0.0; // replace the smallest absolute value with 0
}
std::sort(z.begin(), z.end());
return z;
}
} // namespace