mirror of
https://github.com/superseriousbusiness/gotosocial.git
synced 2024-11-05 00:39:59 +00:00
55aacaf4b0
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
1526 lines
40 KiB
Go
1526 lines
40 KiB
Go
// Copyright (c) 2012-2020 Ugorji Nwoke. All rights reserved.
|
|
// Use of this source code is governed by a MIT license found in the LICENSE file.
|
|
|
|
package codec
|
|
|
|
import (
|
|
"encoding"
|
|
"errors"
|
|
"io"
|
|
"reflect"
|
|
"sort"
|
|
"strconv"
|
|
"time"
|
|
)
|
|
|
|
// defEncByteBufSize is the default size of []byte used
|
|
// for bufio buffer or []byte (when nil passed)
|
|
const defEncByteBufSize = 1 << 10 // 4:16, 6:64, 8:256, 10:1024
|
|
|
|
var errEncoderNotInitialized = errors.New("Encoder not initialized")
|
|
|
|
// encDriver abstracts the actual codec (binc vs msgpack, etc)
|
|
type encDriver interface {
|
|
EncodeNil()
|
|
EncodeInt(i int64)
|
|
EncodeUint(i uint64)
|
|
EncodeBool(b bool)
|
|
EncodeFloat32(f float32)
|
|
EncodeFloat64(f float64)
|
|
EncodeRawExt(re *RawExt)
|
|
EncodeExt(v interface{}, basetype reflect.Type, xtag uint64, ext Ext)
|
|
// EncodeString using cUTF8, honor'ing StringToRaw flag
|
|
EncodeString(v string)
|
|
EncodeStringBytesRaw(v []byte)
|
|
EncodeTime(time.Time)
|
|
WriteArrayStart(length int)
|
|
WriteArrayEnd()
|
|
WriteMapStart(length int)
|
|
WriteMapEnd()
|
|
|
|
// reset will reset current encoding runtime state, and cached information from the handle
|
|
reset()
|
|
|
|
encoder() *Encoder
|
|
|
|
driverStateManager
|
|
}
|
|
|
|
type encDriverContainerTracker interface {
|
|
WriteArrayElem()
|
|
WriteMapElemKey()
|
|
WriteMapElemValue()
|
|
}
|
|
|
|
type encDriverNoState struct{}
|
|
|
|
func (encDriverNoState) captureState() interface{} { return nil }
|
|
func (encDriverNoState) reset() {}
|
|
func (encDriverNoState) resetState() {}
|
|
func (encDriverNoState) restoreState(v interface{}) {}
|
|
|
|
type encDriverNoopContainerWriter struct{}
|
|
|
|
func (encDriverNoopContainerWriter) WriteArrayStart(length int) {}
|
|
func (encDriverNoopContainerWriter) WriteArrayEnd() {}
|
|
func (encDriverNoopContainerWriter) WriteMapStart(length int) {}
|
|
func (encDriverNoopContainerWriter) WriteMapEnd() {}
|
|
|
|
// encStructFieldObj[Slice] is used for sorting when there are missing fields and canonical flag is set
|
|
type encStructFieldObj struct {
|
|
key string
|
|
rv reflect.Value
|
|
intf interface{}
|
|
ascii bool
|
|
isRv bool
|
|
}
|
|
|
|
type encStructFieldObjSlice []encStructFieldObj
|
|
|
|
func (p encStructFieldObjSlice) Len() int { return len(p) }
|
|
func (p encStructFieldObjSlice) Swap(i, j int) { p[uint(i)], p[uint(j)] = p[uint(j)], p[uint(i)] }
|
|
func (p encStructFieldObjSlice) Less(i, j int) bool {
|
|
return p[uint(i)].key < p[uint(j)].key
|
|
}
|
|
|
|
// EncodeOptions captures configuration options during encode.
|
|
type EncodeOptions struct {
|
|
// WriterBufferSize is the size of the buffer used when writing.
|
|
//
|
|
// if > 0, we use a smart buffer internally for performance purposes.
|
|
WriterBufferSize int
|
|
|
|
// ChanRecvTimeout is the timeout used when selecting from a chan.
|
|
//
|
|
// Configuring this controls how we receive from a chan during the encoding process.
|
|
// - If ==0, we only consume the elements currently available in the chan.
|
|
// - if <0, we consume until the chan is closed.
|
|
// - If >0, we consume until this timeout.
|
|
ChanRecvTimeout time.Duration
|
|
|
|
// StructToArray specifies to encode a struct as an array, and not as a map
|
|
StructToArray bool
|
|
|
|
// Canonical representation means that encoding a value will always result in the same
|
|
// sequence of bytes.
|
|
//
|
|
// This only affects maps, as the iteration order for maps is random.
|
|
//
|
|
// The implementation MAY use the natural sort order for the map keys if possible:
|
|
//
|
|
// - If there is a natural sort order (ie for number, bool, string or []byte keys),
|
|
// then the map keys are first sorted in natural order and then written
|
|
// with corresponding map values to the strema.
|
|
// - If there is no natural sort order, then the map keys will first be
|
|
// encoded into []byte, and then sorted,
|
|
// before writing the sorted keys and the corresponding map values to the stream.
|
|
//
|
|
Canonical bool
|
|
|
|
// CheckCircularRef controls whether we check for circular references
|
|
// and error fast during an encode.
|
|
//
|
|
// If enabled, an error is received if a pointer to a struct
|
|
// references itself either directly or through one of its fields (iteratively).
|
|
//
|
|
// This is opt-in, as there may be a performance hit to checking circular references.
|
|
CheckCircularRef bool
|
|
|
|
// RecursiveEmptyCheck controls how we determine whether a value is empty.
|
|
//
|
|
// If true, we descend into interfaces and pointers to reursively check if value is empty.
|
|
//
|
|
// We *might* check struct fields one by one to see if empty
|
|
// (if we cannot directly check if a struct value is equal to its zero value).
|
|
// If so, we honor IsZero, Comparable, IsCodecEmpty(), etc.
|
|
// Note: This *may* make OmitEmpty more expensive due to the large number of reflect calls.
|
|
//
|
|
// If false, we check if the value is equal to its zero value (newly allocated state).
|
|
RecursiveEmptyCheck bool
|
|
|
|
// Raw controls whether we encode Raw values.
|
|
// This is a "dangerous" option and must be explicitly set.
|
|
// If set, we blindly encode Raw values as-is, without checking
|
|
// if they are a correct representation of a value in that format.
|
|
// If unset, we error out.
|
|
Raw bool
|
|
|
|
// StringToRaw controls how strings are encoded.
|
|
//
|
|
// As a go string is just an (immutable) sequence of bytes,
|
|
// it can be encoded either as raw bytes or as a UTF string.
|
|
//
|
|
// By default, strings are encoded as UTF-8.
|
|
// but can be treated as []byte during an encode.
|
|
//
|
|
// Note that things which we know (by definition) to be UTF-8
|
|
// are ALWAYS encoded as UTF-8 strings.
|
|
// These include encoding.TextMarshaler, time.Format calls, struct field names, etc.
|
|
StringToRaw bool
|
|
|
|
// OptimumSize controls whether we optimize for the smallest size.
|
|
//
|
|
// Some formats will use this flag to determine whether to encode
|
|
// in the smallest size possible, even if it takes slightly longer.
|
|
//
|
|
// For example, some formats that support half-floats might check if it is possible
|
|
// to store a float64 as a half float. Doing this check has a small performance cost,
|
|
// but the benefit is that the encoded message will be smaller.
|
|
OptimumSize bool
|
|
|
|
// NoAddressableReadonly controls whether we try to force a non-addressable value
|
|
// to be addressable so we can call a pointer method on it e.g. for types
|
|
// that support Selfer, json.Marshaler, etc.
|
|
//
|
|
// Use it in the very rare occurrence that your types modify a pointer value when calling
|
|
// an encode callback function e.g. JsonMarshal, TextMarshal, BinaryMarshal or CodecEncodeSelf.
|
|
NoAddressableReadonly bool
|
|
}
|
|
|
|
// ---------------------------------------------
|
|
|
|
func (e *Encoder) rawExt(f *codecFnInfo, rv reflect.Value) {
|
|
e.e.EncodeRawExt(rv2i(rv).(*RawExt))
|
|
}
|
|
|
|
func (e *Encoder) ext(f *codecFnInfo, rv reflect.Value) {
|
|
e.e.EncodeExt(rv2i(rv), f.ti.rt, f.xfTag, f.xfFn)
|
|
}
|
|
|
|
func (e *Encoder) selferMarshal(f *codecFnInfo, rv reflect.Value) {
|
|
rv2i(rv).(Selfer).CodecEncodeSelf(e)
|
|
}
|
|
|
|
func (e *Encoder) binaryMarshal(f *codecFnInfo, rv reflect.Value) {
|
|
bs, fnerr := rv2i(rv).(encoding.BinaryMarshaler).MarshalBinary()
|
|
e.marshalRaw(bs, fnerr)
|
|
}
|
|
|
|
func (e *Encoder) textMarshal(f *codecFnInfo, rv reflect.Value) {
|
|
bs, fnerr := rv2i(rv).(encoding.TextMarshaler).MarshalText()
|
|
e.marshalUtf8(bs, fnerr)
|
|
}
|
|
|
|
func (e *Encoder) jsonMarshal(f *codecFnInfo, rv reflect.Value) {
|
|
bs, fnerr := rv2i(rv).(jsonMarshaler).MarshalJSON()
|
|
e.marshalAsis(bs, fnerr)
|
|
}
|
|
|
|
func (e *Encoder) raw(f *codecFnInfo, rv reflect.Value) {
|
|
e.rawBytes(rv2i(rv).(Raw))
|
|
}
|
|
|
|
func (e *Encoder) encodeComplex64(v complex64) {
|
|
if imag(v) != 0 {
|
|
e.errorf("cannot encode complex number: %v, with imaginary values: %v", v, imag(v))
|
|
}
|
|
e.e.EncodeFloat32(real(v))
|
|
}
|
|
|
|
func (e *Encoder) encodeComplex128(v complex128) {
|
|
if imag(v) != 0 {
|
|
e.errorf("cannot encode complex number: %v, with imaginary values: %v", v, imag(v))
|
|
}
|
|
e.e.EncodeFloat64(real(v))
|
|
}
|
|
|
|
func (e *Encoder) kBool(f *codecFnInfo, rv reflect.Value) {
|
|
e.e.EncodeBool(rvGetBool(rv))
|
|
}
|
|
|
|
func (e *Encoder) kTime(f *codecFnInfo, rv reflect.Value) {
|
|
e.e.EncodeTime(rvGetTime(rv))
|
|
}
|
|
|
|
func (e *Encoder) kString(f *codecFnInfo, rv reflect.Value) {
|
|
e.e.EncodeString(rvGetString(rv))
|
|
}
|
|
|
|
func (e *Encoder) kFloat32(f *codecFnInfo, rv reflect.Value) {
|
|
e.e.EncodeFloat32(rvGetFloat32(rv))
|
|
}
|
|
|
|
func (e *Encoder) kFloat64(f *codecFnInfo, rv reflect.Value) {
|
|
e.e.EncodeFloat64(rvGetFloat64(rv))
|
|
}
|
|
|
|
func (e *Encoder) kComplex64(f *codecFnInfo, rv reflect.Value) {
|
|
e.encodeComplex64(rvGetComplex64(rv))
|
|
}
|
|
|
|
func (e *Encoder) kComplex128(f *codecFnInfo, rv reflect.Value) {
|
|
e.encodeComplex128(rvGetComplex128(rv))
|
|
}
|
|
|
|
func (e *Encoder) kInt(f *codecFnInfo, rv reflect.Value) {
|
|
e.e.EncodeInt(int64(rvGetInt(rv)))
|
|
}
|
|
|
|
func (e *Encoder) kInt8(f *codecFnInfo, rv reflect.Value) {
|
|
e.e.EncodeInt(int64(rvGetInt8(rv)))
|
|
}
|
|
|
|
func (e *Encoder) kInt16(f *codecFnInfo, rv reflect.Value) {
|
|
e.e.EncodeInt(int64(rvGetInt16(rv)))
|
|
}
|
|
|
|
func (e *Encoder) kInt32(f *codecFnInfo, rv reflect.Value) {
|
|
e.e.EncodeInt(int64(rvGetInt32(rv)))
|
|
}
|
|
|
|
func (e *Encoder) kInt64(f *codecFnInfo, rv reflect.Value) {
|
|
e.e.EncodeInt(int64(rvGetInt64(rv)))
|
|
}
|
|
|
|
func (e *Encoder) kUint(f *codecFnInfo, rv reflect.Value) {
|
|
e.e.EncodeUint(uint64(rvGetUint(rv)))
|
|
}
|
|
|
|
func (e *Encoder) kUint8(f *codecFnInfo, rv reflect.Value) {
|
|
e.e.EncodeUint(uint64(rvGetUint8(rv)))
|
|
}
|
|
|
|
func (e *Encoder) kUint16(f *codecFnInfo, rv reflect.Value) {
|
|
e.e.EncodeUint(uint64(rvGetUint16(rv)))
|
|
}
|
|
|
|
func (e *Encoder) kUint32(f *codecFnInfo, rv reflect.Value) {
|
|
e.e.EncodeUint(uint64(rvGetUint32(rv)))
|
|
}
|
|
|
|
func (e *Encoder) kUint64(f *codecFnInfo, rv reflect.Value) {
|
|
e.e.EncodeUint(uint64(rvGetUint64(rv)))
|
|
}
|
|
|
|
func (e *Encoder) kUintptr(f *codecFnInfo, rv reflect.Value) {
|
|
e.e.EncodeUint(uint64(rvGetUintptr(rv)))
|
|
}
|
|
|
|
func (e *Encoder) kErr(f *codecFnInfo, rv reflect.Value) {
|
|
e.errorf("unsupported kind %s, for %#v", rv.Kind(), rv)
|
|
}
|
|
|
|
func chanToSlice(rv reflect.Value, rtslice reflect.Type, timeout time.Duration) (rvcs reflect.Value) {
|
|
rvcs = rvZeroK(rtslice, reflect.Slice)
|
|
if timeout < 0 { // consume until close
|
|
for {
|
|
recv, recvOk := rv.Recv()
|
|
if !recvOk {
|
|
break
|
|
}
|
|
rvcs = reflect.Append(rvcs, recv)
|
|
}
|
|
} else {
|
|
cases := make([]reflect.SelectCase, 2)
|
|
cases[0] = reflect.SelectCase{Dir: reflect.SelectRecv, Chan: rv}
|
|
if timeout == 0 {
|
|
cases[1] = reflect.SelectCase{Dir: reflect.SelectDefault}
|
|
} else {
|
|
tt := time.NewTimer(timeout)
|
|
cases[1] = reflect.SelectCase{Dir: reflect.SelectRecv, Chan: reflect.ValueOf(tt.C)}
|
|
}
|
|
for {
|
|
chosen, recv, recvOk := reflect.Select(cases)
|
|
if chosen == 1 || !recvOk {
|
|
break
|
|
}
|
|
rvcs = reflect.Append(rvcs, recv)
|
|
}
|
|
}
|
|
return
|
|
}
|
|
|
|
func (e *Encoder) kSeqFn(rtelem reflect.Type) (fn *codecFn) {
|
|
for rtelem.Kind() == reflect.Ptr {
|
|
rtelem = rtelem.Elem()
|
|
}
|
|
// if kind is reflect.Interface, do not pre-determine the encoding type,
|
|
// because preEncodeValue may break it down to a concrete type and kInterface will bomb.
|
|
if rtelem.Kind() != reflect.Interface {
|
|
fn = e.h.fn(rtelem)
|
|
}
|
|
return
|
|
}
|
|
|
|
func (e *Encoder) kSliceWMbs(rv reflect.Value, ti *typeInfo) {
|
|
var l = rvLenSlice(rv)
|
|
if l == 0 {
|
|
e.mapStart(0)
|
|
} else {
|
|
e.haltOnMbsOddLen(l)
|
|
e.mapStart(l >> 1) // e.mapStart(l / 2)
|
|
fn := e.kSeqFn(ti.elem)
|
|
for j := 0; j < l; j++ {
|
|
if j&1 == 0 { // j%2 == 0 {
|
|
e.mapElemKey()
|
|
} else {
|
|
e.mapElemValue()
|
|
}
|
|
e.encodeValue(rvSliceIndex(rv, j, ti), fn)
|
|
}
|
|
}
|
|
e.mapEnd()
|
|
}
|
|
|
|
func (e *Encoder) kSliceW(rv reflect.Value, ti *typeInfo) {
|
|
var l = rvLenSlice(rv)
|
|
e.arrayStart(l)
|
|
if l > 0 {
|
|
fn := e.kSeqFn(ti.elem)
|
|
for j := 0; j < l; j++ {
|
|
e.arrayElem()
|
|
e.encodeValue(rvSliceIndex(rv, j, ti), fn)
|
|
}
|
|
}
|
|
e.arrayEnd()
|
|
}
|
|
|
|
func (e *Encoder) kArrayWMbs(rv reflect.Value, ti *typeInfo) {
|
|
var l = rv.Len()
|
|
if l == 0 {
|
|
e.mapStart(0)
|
|
} else {
|
|
e.haltOnMbsOddLen(l)
|
|
e.mapStart(l >> 1) // e.mapStart(l / 2)
|
|
fn := e.kSeqFn(ti.elem)
|
|
for j := 0; j < l; j++ {
|
|
if j&1 == 0 { // j%2 == 0 {
|
|
e.mapElemKey()
|
|
} else {
|
|
e.mapElemValue()
|
|
}
|
|
e.encodeValue(rv.Index(j), fn)
|
|
}
|
|
}
|
|
e.mapEnd()
|
|
}
|
|
|
|
func (e *Encoder) kArrayW(rv reflect.Value, ti *typeInfo) {
|
|
var l = rv.Len()
|
|
e.arrayStart(l)
|
|
if l > 0 {
|
|
fn := e.kSeqFn(ti.elem)
|
|
for j := 0; j < l; j++ {
|
|
e.arrayElem()
|
|
e.encodeValue(rv.Index(j), fn)
|
|
}
|
|
}
|
|
e.arrayEnd()
|
|
}
|
|
|
|
func (e *Encoder) kChan(f *codecFnInfo, rv reflect.Value) {
|
|
if f.ti.chandir&uint8(reflect.RecvDir) == 0 {
|
|
e.errorf("send-only channel cannot be encoded")
|
|
}
|
|
if !f.ti.mbs && uint8TypId == rt2id(f.ti.elem) {
|
|
e.kSliceBytesChan(rv)
|
|
return
|
|
}
|
|
rtslice := reflect.SliceOf(f.ti.elem)
|
|
rv = chanToSlice(rv, rtslice, e.h.ChanRecvTimeout)
|
|
ti := e.h.getTypeInfo(rt2id(rtslice), rtslice)
|
|
if f.ti.mbs {
|
|
e.kSliceWMbs(rv, ti)
|
|
} else {
|
|
e.kSliceW(rv, ti)
|
|
}
|
|
}
|
|
|
|
func (e *Encoder) kSlice(f *codecFnInfo, rv reflect.Value) {
|
|
if f.ti.mbs {
|
|
e.kSliceWMbs(rv, f.ti)
|
|
} else if f.ti.rtid == uint8SliceTypId || uint8TypId == rt2id(f.ti.elem) {
|
|
e.e.EncodeStringBytesRaw(rvGetBytes(rv))
|
|
} else {
|
|
e.kSliceW(rv, f.ti)
|
|
}
|
|
}
|
|
|
|
func (e *Encoder) kArray(f *codecFnInfo, rv reflect.Value) {
|
|
if f.ti.mbs {
|
|
e.kArrayWMbs(rv, f.ti)
|
|
} else if handleBytesWithinKArray && uint8TypId == rt2id(f.ti.elem) {
|
|
e.e.EncodeStringBytesRaw(rvGetArrayBytes(rv, []byte{}))
|
|
} else {
|
|
e.kArrayW(rv, f.ti)
|
|
}
|
|
}
|
|
|
|
func (e *Encoder) kSliceBytesChan(rv reflect.Value) {
|
|
// do not use range, so that the number of elements encoded
|
|
// does not change, and encoding does not hang waiting on someone to close chan.
|
|
|
|
bs0 := e.blist.peek(32, true)
|
|
bs := bs0
|
|
|
|
irv := rv2i(rv)
|
|
ch, ok := irv.(<-chan byte)
|
|
if !ok {
|
|
ch = irv.(chan byte)
|
|
}
|
|
|
|
L1:
|
|
switch timeout := e.h.ChanRecvTimeout; {
|
|
case timeout == 0: // only consume available
|
|
for {
|
|
select {
|
|
case b := <-ch:
|
|
bs = append(bs, b)
|
|
default:
|
|
break L1
|
|
}
|
|
}
|
|
case timeout > 0: // consume until timeout
|
|
tt := time.NewTimer(timeout)
|
|
for {
|
|
select {
|
|
case b := <-ch:
|
|
bs = append(bs, b)
|
|
case <-tt.C:
|
|
// close(tt.C)
|
|
break L1
|
|
}
|
|
}
|
|
default: // consume until close
|
|
for b := range ch {
|
|
bs = append(bs, b)
|
|
}
|
|
}
|
|
|
|
e.e.EncodeStringBytesRaw(bs)
|
|
e.blist.put(bs)
|
|
if !byteSliceSameData(bs0, bs) {
|
|
e.blist.put(bs0)
|
|
}
|
|
}
|
|
|
|
func (e *Encoder) kStructSfi(f *codecFnInfo) []*structFieldInfo {
|
|
if e.h.Canonical {
|
|
return f.ti.sfi.sorted()
|
|
}
|
|
return f.ti.sfi.source()
|
|
}
|
|
|
|
func (e *Encoder) kStructNoOmitempty(f *codecFnInfo, rv reflect.Value) {
|
|
var tisfi []*structFieldInfo
|
|
if f.ti.toArray || e.h.StructToArray { // toArray
|
|
tisfi = f.ti.sfi.source()
|
|
e.arrayStart(len(tisfi))
|
|
for _, si := range tisfi {
|
|
e.arrayElem()
|
|
e.encodeValue(si.path.field(rv), nil)
|
|
}
|
|
e.arrayEnd()
|
|
} else {
|
|
tisfi = e.kStructSfi(f)
|
|
e.mapStart(len(tisfi))
|
|
keytyp := f.ti.keyType
|
|
for _, si := range tisfi {
|
|
e.mapElemKey()
|
|
e.kStructFieldKey(keytyp, si.path.encNameAsciiAlphaNum, si.encName)
|
|
e.mapElemValue()
|
|
e.encodeValue(si.path.field(rv), nil)
|
|
}
|
|
e.mapEnd()
|
|
}
|
|
}
|
|
|
|
func (e *Encoder) kStructFieldKey(keyType valueType, encNameAsciiAlphaNum bool, encName string) {
|
|
encStructFieldKey(encName, e.e, e.w(), keyType, encNameAsciiAlphaNum, e.js)
|
|
}
|
|
|
|
func (e *Encoder) kStruct(f *codecFnInfo, rv reflect.Value) {
|
|
var newlen int
|
|
ti := f.ti
|
|
toMap := !(ti.toArray || e.h.StructToArray)
|
|
var mf map[string]interface{}
|
|
if ti.flagMissingFielder {
|
|
mf = rv2i(rv).(MissingFielder).CodecMissingFields()
|
|
toMap = true
|
|
newlen += len(mf)
|
|
} else if ti.flagMissingFielderPtr {
|
|
rv2 := e.addrRV(rv, ti.rt, ti.ptr)
|
|
mf = rv2i(rv2).(MissingFielder).CodecMissingFields()
|
|
toMap = true
|
|
newlen += len(mf)
|
|
}
|
|
tisfi := ti.sfi.source()
|
|
newlen += len(tisfi)
|
|
|
|
var fkvs = e.slist.get(newlen)[:newlen]
|
|
|
|
recur := e.h.RecursiveEmptyCheck
|
|
|
|
var kv sfiRv
|
|
var j int
|
|
if toMap {
|
|
newlen = 0
|
|
for _, si := range e.kStructSfi(f) {
|
|
kv.r = si.path.field(rv)
|
|
if si.path.omitEmpty && isEmptyValue(kv.r, e.h.TypeInfos, recur) {
|
|
continue
|
|
}
|
|
kv.v = si
|
|
fkvs[newlen] = kv
|
|
newlen++
|
|
}
|
|
|
|
var mf2s []stringIntf
|
|
if len(mf) > 0 {
|
|
mf2s = make([]stringIntf, 0, len(mf))
|
|
for k, v := range mf {
|
|
if k == "" {
|
|
continue
|
|
}
|
|
if ti.infoFieldOmitempty && isEmptyValue(reflect.ValueOf(v), e.h.TypeInfos, recur) {
|
|
continue
|
|
}
|
|
mf2s = append(mf2s, stringIntf{k, v})
|
|
}
|
|
}
|
|
|
|
e.mapStart(newlen + len(mf2s))
|
|
|
|
// When there are missing fields, and Canonical flag is set,
|
|
// we cannot have the missing fields and struct fields sorted independently.
|
|
// We have to capture them together and sort as a unit.
|
|
|
|
if len(mf2s) > 0 && e.h.Canonical {
|
|
mf2w := make([]encStructFieldObj, newlen+len(mf2s))
|
|
for j = 0; j < newlen; j++ {
|
|
kv = fkvs[j]
|
|
mf2w[j] = encStructFieldObj{kv.v.encName, kv.r, nil, kv.v.path.encNameAsciiAlphaNum, true}
|
|
}
|
|
for _, v := range mf2s {
|
|
mf2w[j] = encStructFieldObj{v.v, reflect.Value{}, v.i, false, false}
|
|
j++
|
|
}
|
|
sort.Sort((encStructFieldObjSlice)(mf2w))
|
|
for _, v := range mf2w {
|
|
e.mapElemKey()
|
|
e.kStructFieldKey(ti.keyType, v.ascii, v.key)
|
|
e.mapElemValue()
|
|
if v.isRv {
|
|
e.encodeValue(v.rv, nil)
|
|
} else {
|
|
e.encode(v.intf)
|
|
}
|
|
}
|
|
} else {
|
|
keytyp := ti.keyType
|
|
for j = 0; j < newlen; j++ {
|
|
kv = fkvs[j]
|
|
e.mapElemKey()
|
|
e.kStructFieldKey(keytyp, kv.v.path.encNameAsciiAlphaNum, kv.v.encName)
|
|
e.mapElemValue()
|
|
e.encodeValue(kv.r, nil)
|
|
}
|
|
for _, v := range mf2s {
|
|
e.mapElemKey()
|
|
e.kStructFieldKey(keytyp, false, v.v)
|
|
e.mapElemValue()
|
|
e.encode(v.i)
|
|
}
|
|
}
|
|
|
|
e.mapEnd()
|
|
} else {
|
|
newlen = len(tisfi)
|
|
for i, si := range tisfi { // use unsorted array (to match sequence in struct)
|
|
kv.r = si.path.field(rv)
|
|
// use the zero value.
|
|
// if a reference or struct, set to nil (so you do not output too much)
|
|
if si.path.omitEmpty && isEmptyValue(kv.r, e.h.TypeInfos, recur) {
|
|
switch kv.r.Kind() {
|
|
case reflect.Struct, reflect.Interface, reflect.Ptr, reflect.Array, reflect.Map, reflect.Slice:
|
|
kv.r = reflect.Value{} //encode as nil
|
|
}
|
|
}
|
|
fkvs[i] = kv
|
|
}
|
|
// encode it all
|
|
e.arrayStart(newlen)
|
|
for j = 0; j < newlen; j++ {
|
|
e.arrayElem()
|
|
e.encodeValue(fkvs[j].r, nil)
|
|
}
|
|
e.arrayEnd()
|
|
}
|
|
|
|
// do not use defer. Instead, use explicit pool return at end of function.
|
|
// defer has a cost we are trying to avoid.
|
|
// If there is a panic and these slices are not returned, it is ok.
|
|
e.slist.put(fkvs)
|
|
}
|
|
|
|
func (e *Encoder) kMap(f *codecFnInfo, rv reflect.Value) {
|
|
l := rvLenMap(rv)
|
|
e.mapStart(l)
|
|
if l == 0 {
|
|
e.mapEnd()
|
|
return
|
|
}
|
|
|
|
// determine the underlying key and val encFn's for the map.
|
|
// This eliminates some work which is done for each loop iteration i.e.
|
|
// rv.Type(), ref.ValueOf(rt).Pointer(), then check map/list for fn.
|
|
//
|
|
// However, if kind is reflect.Interface, do not pre-determine the
|
|
// encoding type, because preEncodeValue may break it down to
|
|
// a concrete type and kInterface will bomb.
|
|
|
|
var keyFn, valFn *codecFn
|
|
|
|
ktypeKind := reflect.Kind(f.ti.keykind)
|
|
vtypeKind := reflect.Kind(f.ti.elemkind)
|
|
|
|
rtval := f.ti.elem
|
|
rtvalkind := vtypeKind
|
|
for rtvalkind == reflect.Ptr {
|
|
rtval = rtval.Elem()
|
|
rtvalkind = rtval.Kind()
|
|
}
|
|
if rtvalkind != reflect.Interface {
|
|
valFn = e.h.fn(rtval)
|
|
}
|
|
|
|
var rvv = mapAddrLoopvarRV(f.ti.elem, vtypeKind)
|
|
|
|
rtkey := f.ti.key
|
|
var keyTypeIsString = stringTypId == rt2id(rtkey) // rtkeyid
|
|
if keyTypeIsString {
|
|
keyFn = e.h.fn(rtkey)
|
|
} else {
|
|
for rtkey.Kind() == reflect.Ptr {
|
|
rtkey = rtkey.Elem()
|
|
}
|
|
if rtkey.Kind() != reflect.Interface {
|
|
keyFn = e.h.fn(rtkey)
|
|
}
|
|
}
|
|
|
|
if e.h.Canonical {
|
|
e.kMapCanonical(f.ti, rv, rvv, keyFn, valFn)
|
|
e.mapEnd()
|
|
return
|
|
}
|
|
|
|
var rvk = mapAddrLoopvarRV(f.ti.key, ktypeKind)
|
|
|
|
var it mapIter
|
|
mapRange(&it, rv, rvk, rvv, true)
|
|
|
|
for it.Next() {
|
|
e.mapElemKey()
|
|
if keyTypeIsString {
|
|
e.e.EncodeString(it.Key().String())
|
|
} else {
|
|
e.encodeValue(it.Key(), keyFn)
|
|
}
|
|
e.mapElemValue()
|
|
e.encodeValue(it.Value(), valFn)
|
|
}
|
|
it.Done()
|
|
|
|
e.mapEnd()
|
|
}
|
|
|
|
func (e *Encoder) kMapCanonical(ti *typeInfo, rv, rvv reflect.Value, keyFn, valFn *codecFn) {
|
|
// The base kind of the type of the map key is sufficient for ordering.
|
|
// We only do out of band if that kind is not ordered (number or string), bool or time.Time.
|
|
// If the key is a predeclared type, directly call methods on encDriver e.g. EncodeString
|
|
// but if not, call encodeValue, in case it has an extension registered or otherwise.
|
|
rtkey := ti.key
|
|
rtkeydecl := rtkey.PkgPath() == "" && rtkey.Name() != "" // key type is predeclared
|
|
|
|
mks := rv.MapKeys()
|
|
rtkeyKind := rtkey.Kind()
|
|
kfast := mapKeyFastKindFor(rtkeyKind)
|
|
visindirect := mapStoresElemIndirect(uintptr(ti.elemsize))
|
|
visref := refBitset.isset(ti.elemkind)
|
|
|
|
switch rtkeyKind {
|
|
case reflect.Bool:
|
|
// though bool keys make no sense in a map, it *could* happen.
|
|
// in that case, we MUST support it in reflection mode,
|
|
// as that is the fallback for even codecgen and others.
|
|
|
|
// sort the keys so that false comes before true
|
|
// ie if 2 keys in order (true, false), then swap them
|
|
if len(mks) == 2 && mks[0].Bool() {
|
|
mks[0], mks[1] = mks[1], mks[0]
|
|
}
|
|
for i := range mks {
|
|
e.mapElemKey()
|
|
if rtkeydecl {
|
|
e.e.EncodeBool(mks[i].Bool())
|
|
} else {
|
|
e.encodeValueNonNil(mks[i], keyFn)
|
|
}
|
|
e.mapElemValue()
|
|
e.encodeValue(mapGet(rv, mks[i], rvv, kfast, visindirect, visref), valFn)
|
|
}
|
|
case reflect.String:
|
|
mksv := make([]stringRv, len(mks))
|
|
for i, k := range mks {
|
|
v := &mksv[i]
|
|
v.r = k
|
|
v.v = k.String()
|
|
}
|
|
sort.Sort(stringRvSlice(mksv))
|
|
for i := range mksv {
|
|
e.mapElemKey()
|
|
if rtkeydecl {
|
|
e.e.EncodeString(mksv[i].v)
|
|
} else {
|
|
e.encodeValueNonNil(mksv[i].r, keyFn)
|
|
}
|
|
e.mapElemValue()
|
|
e.encodeValue(mapGet(rv, mksv[i].r, rvv, kfast, visindirect, visref), valFn)
|
|
}
|
|
case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint, reflect.Uintptr:
|
|
mksv := make([]uint64Rv, len(mks))
|
|
for i, k := range mks {
|
|
v := &mksv[i]
|
|
v.r = k
|
|
v.v = k.Uint()
|
|
}
|
|
sort.Sort(uint64RvSlice(mksv))
|
|
for i := range mksv {
|
|
e.mapElemKey()
|
|
if rtkeydecl {
|
|
e.e.EncodeUint(mksv[i].v)
|
|
} else {
|
|
e.encodeValueNonNil(mksv[i].r, keyFn)
|
|
}
|
|
e.mapElemValue()
|
|
e.encodeValue(mapGet(rv, mksv[i].r, rvv, kfast, visindirect, visref), valFn)
|
|
}
|
|
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
|
|
mksv := make([]int64Rv, len(mks))
|
|
for i, k := range mks {
|
|
v := &mksv[i]
|
|
v.r = k
|
|
v.v = k.Int()
|
|
}
|
|
sort.Sort(int64RvSlice(mksv))
|
|
for i := range mksv {
|
|
e.mapElemKey()
|
|
if rtkeydecl {
|
|
e.e.EncodeInt(mksv[i].v)
|
|
} else {
|
|
e.encodeValueNonNil(mksv[i].r, keyFn)
|
|
}
|
|
e.mapElemValue()
|
|
e.encodeValue(mapGet(rv, mksv[i].r, rvv, kfast, visindirect, visref), valFn)
|
|
}
|
|
case reflect.Float32:
|
|
mksv := make([]float64Rv, len(mks))
|
|
for i, k := range mks {
|
|
v := &mksv[i]
|
|
v.r = k
|
|
v.v = k.Float()
|
|
}
|
|
sort.Sort(float64RvSlice(mksv))
|
|
for i := range mksv {
|
|
e.mapElemKey()
|
|
if rtkeydecl {
|
|
e.e.EncodeFloat32(float32(mksv[i].v))
|
|
} else {
|
|
e.encodeValueNonNil(mksv[i].r, keyFn)
|
|
}
|
|
e.mapElemValue()
|
|
e.encodeValue(mapGet(rv, mksv[i].r, rvv, kfast, visindirect, visref), valFn)
|
|
}
|
|
case reflect.Float64:
|
|
mksv := make([]float64Rv, len(mks))
|
|
for i, k := range mks {
|
|
v := &mksv[i]
|
|
v.r = k
|
|
v.v = k.Float()
|
|
}
|
|
sort.Sort(float64RvSlice(mksv))
|
|
for i := range mksv {
|
|
e.mapElemKey()
|
|
if rtkeydecl {
|
|
e.e.EncodeFloat64(mksv[i].v)
|
|
} else {
|
|
e.encodeValueNonNil(mksv[i].r, keyFn)
|
|
}
|
|
e.mapElemValue()
|
|
e.encodeValue(mapGet(rv, mksv[i].r, rvv, kfast, visindirect, visref), valFn)
|
|
}
|
|
default:
|
|
if rtkey == timeTyp {
|
|
mksv := make([]timeRv, len(mks))
|
|
for i, k := range mks {
|
|
v := &mksv[i]
|
|
v.r = k
|
|
v.v = rv2i(k).(time.Time)
|
|
}
|
|
sort.Sort(timeRvSlice(mksv))
|
|
for i := range mksv {
|
|
e.mapElemKey()
|
|
e.e.EncodeTime(mksv[i].v)
|
|
e.mapElemValue()
|
|
e.encodeValue(mapGet(rv, mksv[i].r, rvv, kfast, visindirect, visref), valFn)
|
|
}
|
|
break
|
|
}
|
|
|
|
// out-of-band
|
|
// first encode each key to a []byte first, then sort them, then record
|
|
bs0 := e.blist.get(len(mks) * 16)
|
|
mksv := bs0
|
|
mksbv := make([]bytesRv, len(mks))
|
|
|
|
func() {
|
|
// replicate sideEncode logic
|
|
defer func(wb bytesEncAppender, bytes bool, c containerState, state interface{}) {
|
|
e.wb = wb
|
|
e.bytes = bytes
|
|
e.c = c
|
|
e.e.restoreState(state)
|
|
}(e.wb, e.bytes, e.c, e.e.captureState())
|
|
|
|
// e2 := NewEncoderBytes(&mksv, e.hh)
|
|
e.wb = bytesEncAppender{mksv[:0], &mksv}
|
|
e.bytes = true
|
|
e.c = 0
|
|
e.e.resetState()
|
|
|
|
for i, k := range mks {
|
|
v := &mksbv[i]
|
|
l := len(mksv)
|
|
|
|
e.c = containerMapKey
|
|
e.encodeValue(k, nil)
|
|
e.atEndOfEncode()
|
|
e.w().end()
|
|
|
|
v.r = k
|
|
v.v = mksv[l:]
|
|
}
|
|
}()
|
|
|
|
sort.Sort(bytesRvSlice(mksbv))
|
|
for j := range mksbv {
|
|
e.mapElemKey()
|
|
e.encWr.writeb(mksbv[j].v)
|
|
e.mapElemValue()
|
|
e.encodeValue(mapGet(rv, mksbv[j].r, rvv, kfast, visindirect, visref), valFn)
|
|
}
|
|
e.blist.put(mksv)
|
|
if !byteSliceSameData(bs0, mksv) {
|
|
e.blist.put(bs0)
|
|
}
|
|
}
|
|
}
|
|
|
|
// Encoder writes an object to an output stream in a supported format.
|
|
//
|
|
// Encoder is NOT safe for concurrent use i.e. a Encoder cannot be used
|
|
// concurrently in multiple goroutines.
|
|
//
|
|
// However, as Encoder could be allocation heavy to initialize, a Reset method is provided
|
|
// so its state can be reused to decode new input streams repeatedly.
|
|
// This is the idiomatic way to use.
|
|
type Encoder struct {
|
|
panicHdl
|
|
|
|
e encDriver
|
|
|
|
h *BasicHandle
|
|
|
|
// hopefully, reduce derefencing cost by laying the encWriter inside the Encoder
|
|
encWr
|
|
|
|
// ---- cpu cache line boundary
|
|
hh Handle
|
|
|
|
blist bytesFreelist
|
|
err error
|
|
|
|
// ---- cpu cache line boundary
|
|
|
|
// ---- writable fields during execution --- *try* to keep in sep cache line
|
|
|
|
// ci holds interfaces during an encoding (if CheckCircularRef=true)
|
|
//
|
|
// We considered using a []uintptr (slice of pointer addresses) retrievable via rv.UnsafeAddr.
|
|
// However, it is possible for the same pointer to point to 2 different types e.g.
|
|
// type T struct { tHelper }
|
|
// Here, for var v T; &v and &v.tHelper are the same pointer.
|
|
// Consequently, we need a tuple of type and pointer, which interface{} natively provides.
|
|
ci []interface{} // []uintptr
|
|
|
|
perType encPerType
|
|
|
|
slist sfiRvFreelist
|
|
}
|
|
|
|
// NewEncoder returns an Encoder for encoding into an io.Writer.
|
|
//
|
|
// For efficiency, Users are encouraged to configure WriterBufferSize on the handle
|
|
// OR pass in a memory buffered writer (eg bufio.Writer, bytes.Buffer).
|
|
func NewEncoder(w io.Writer, h Handle) *Encoder {
|
|
e := h.newEncDriver().encoder()
|
|
if w != nil {
|
|
e.Reset(w)
|
|
}
|
|
return e
|
|
}
|
|
|
|
// NewEncoderBytes returns an encoder for encoding directly and efficiently
|
|
// into a byte slice, using zero-copying to temporary slices.
|
|
//
|
|
// It will potentially replace the output byte slice pointed to.
|
|
// After encoding, the out parameter contains the encoded contents.
|
|
func NewEncoderBytes(out *[]byte, h Handle) *Encoder {
|
|
e := h.newEncDriver().encoder()
|
|
if out != nil {
|
|
e.ResetBytes(out)
|
|
}
|
|
return e
|
|
}
|
|
|
|
func (e *Encoder) init(h Handle) {
|
|
initHandle(h)
|
|
e.err = errEncoderNotInitialized
|
|
e.bytes = true
|
|
e.hh = h
|
|
e.h = h.getBasicHandle()
|
|
e.be = e.hh.isBinary()
|
|
}
|
|
|
|
func (e *Encoder) w() *encWr {
|
|
return &e.encWr
|
|
}
|
|
|
|
func (e *Encoder) resetCommon() {
|
|
e.e.reset()
|
|
if e.ci != nil {
|
|
e.ci = e.ci[:0]
|
|
}
|
|
e.c = 0
|
|
e.calls = 0
|
|
e.seq = 0
|
|
e.err = nil
|
|
}
|
|
|
|
// Reset resets the Encoder with a new output stream.
|
|
//
|
|
// This accommodates using the state of the Encoder,
|
|
// where it has "cached" information about sub-engines.
|
|
func (e *Encoder) Reset(w io.Writer) {
|
|
e.bytes = false
|
|
if e.wf == nil {
|
|
e.wf = new(bufioEncWriter)
|
|
}
|
|
e.wf.reset(w, e.h.WriterBufferSize, &e.blist)
|
|
e.resetCommon()
|
|
}
|
|
|
|
// ResetBytes resets the Encoder with a new destination output []byte.
|
|
func (e *Encoder) ResetBytes(out *[]byte) {
|
|
e.bytes = true
|
|
e.wb.reset(encInBytes(out), out)
|
|
e.resetCommon()
|
|
}
|
|
|
|
// Encode writes an object into a stream.
|
|
//
|
|
// Encoding can be configured via the struct tag for the fields.
|
|
// The key (in the struct tags) that we look at is configurable.
|
|
//
|
|
// By default, we look up the "codec" key in the struct field's tags,
|
|
// and fall bak to the "json" key if "codec" is absent.
|
|
// That key in struct field's tag value is the key name,
|
|
// followed by an optional comma and options.
|
|
//
|
|
// To set an option on all fields (e.g. omitempty on all fields), you
|
|
// can create a field called _struct, and set flags on it. The options
|
|
// which can be set on _struct are:
|
|
// - omitempty: so all fields are omitted if empty
|
|
// - toarray: so struct is encoded as an array
|
|
// - int: so struct key names are encoded as signed integers (instead of strings)
|
|
// - uint: so struct key names are encoded as unsigned integers (instead of strings)
|
|
// - float: so struct key names are encoded as floats (instead of strings)
|
|
//
|
|
// More details on these below.
|
|
//
|
|
// Struct values "usually" encode as maps. Each exported struct field is encoded unless:
|
|
// - the field's tag is "-", OR
|
|
// - the field is empty (empty or the zero value) and its tag specifies the "omitempty" option.
|
|
//
|
|
// When encoding as a map, the first string in the tag (before the comma)
|
|
// is the map key string to use when encoding.
|
|
// ...
|
|
// This key is typically encoded as a string.
|
|
// However, there are instances where the encoded stream has mapping keys encoded as numbers.
|
|
// For example, some cbor streams have keys as integer codes in the stream, but they should map
|
|
// to fields in a structured object. Consequently, a struct is the natural representation in code.
|
|
// For these, configure the struct to encode/decode the keys as numbers (instead of string).
|
|
// This is done with the int,uint or float option on the _struct field (see above).
|
|
//
|
|
// However, struct values may encode as arrays. This happens when:
|
|
// - StructToArray Encode option is set, OR
|
|
// - the tag on the _struct field sets the "toarray" option
|
|
//
|
|
// Note that omitempty is ignored when encoding struct values as arrays,
|
|
// as an entry must be encoded for each field, to maintain its position.
|
|
//
|
|
// Values with types that implement MapBySlice are encoded as stream maps.
|
|
//
|
|
// The empty values (for omitempty option) are false, 0, any nil pointer
|
|
// or interface value, and any array, slice, map, or string of length zero.
|
|
//
|
|
// Anonymous fields are encoded inline except:
|
|
// - the struct tag specifies a replacement name (first value)
|
|
// - the field is of an interface type
|
|
//
|
|
// Examples:
|
|
//
|
|
// // NOTE: 'json:' can be used as struct tag key, in place 'codec:' below.
|
|
// type MyStruct struct {
|
|
// _struct bool `codec:",omitempty"` //set omitempty for every field
|
|
// Field1 string `codec:"-"` //skip this field
|
|
// Field2 int `codec:"myName"` //Use key "myName" in encode stream
|
|
// Field3 int32 `codec:",omitempty"` //use key "Field3". Omit if empty.
|
|
// Field4 bool `codec:"f4,omitempty"` //use key "f4". Omit if empty.
|
|
// io.Reader //use key "Reader".
|
|
// MyStruct `codec:"my1" //use key "my1".
|
|
// MyStruct //inline it
|
|
// ...
|
|
// }
|
|
//
|
|
// type MyStruct struct {
|
|
// _struct bool `codec:",toarray"` //encode struct as an array
|
|
// }
|
|
//
|
|
// type MyStruct struct {
|
|
// _struct bool `codec:",uint"` //encode struct with "unsigned integer" keys
|
|
// Field1 string `codec:"1"` //encode Field1 key using: EncodeInt(1)
|
|
// Field2 string `codec:"2"` //encode Field2 key using: EncodeInt(2)
|
|
// }
|
|
//
|
|
// The mode of encoding is based on the type of the value. When a value is seen:
|
|
// - If a Selfer, call its CodecEncodeSelf method
|
|
// - If an extension is registered for it, call that extension function
|
|
// - If implements encoding.(Binary|Text|JSON)Marshaler, call Marshal(Binary|Text|JSON) method
|
|
// - Else encode it based on its reflect.Kind
|
|
//
|
|
// Note that struct field names and keys in map[string]XXX will be treated as symbols.
|
|
// Some formats support symbols (e.g. binc) and will properly encode the string
|
|
// only once in the stream, and use a tag to refer to it thereafter.
|
|
func (e *Encoder) Encode(v interface{}) (err error) {
|
|
// tried to use closure, as runtime optimizes defer with no params.
|
|
// This seemed to be causing weird issues (like circular reference found, unexpected panic, etc).
|
|
// Also, see https://github.com/golang/go/issues/14939#issuecomment-417836139
|
|
if !debugging {
|
|
defer func() {
|
|
// if error occurred during encoding, return that error;
|
|
// else if error occurred on end'ing (i.e. during flush), return that error.
|
|
if x := recover(); x != nil {
|
|
panicValToErr(e, x, &e.err)
|
|
err = e.err
|
|
}
|
|
}()
|
|
}
|
|
|
|
e.MustEncode(v)
|
|
return
|
|
}
|
|
|
|
// MustEncode is like Encode, but panics if unable to Encode.
|
|
//
|
|
// Note: This provides insight to the code location that triggered the error.
|
|
func (e *Encoder) MustEncode(v interface{}) {
|
|
halt.onerror(e.err)
|
|
if e.hh == nil {
|
|
halt.onerror(errNoFormatHandle)
|
|
}
|
|
|
|
e.calls++
|
|
e.encode(v)
|
|
e.calls--
|
|
if e.calls == 0 {
|
|
e.atEndOfEncode()
|
|
e.w().end()
|
|
}
|
|
}
|
|
|
|
// Release releases shared (pooled) resources.
|
|
//
|
|
// It is important to call Release() when done with an Encoder, so those resources
|
|
// are released instantly for use by subsequently created Encoders.
|
|
//
|
|
// Deprecated: Release is a no-op as pooled resources are not used with an Encoder.
|
|
// This method is kept for compatibility reasons only.
|
|
func (e *Encoder) Release() {
|
|
}
|
|
|
|
func (e *Encoder) encode(iv interface{}) {
|
|
// MARKER: a switch with only concrete types can be optimized.
|
|
// consequently, we deal with nil and interfaces outside the switch.
|
|
|
|
if iv == nil {
|
|
e.e.EncodeNil()
|
|
return
|
|
}
|
|
|
|
rv, ok := isNil(iv)
|
|
if ok {
|
|
e.e.EncodeNil()
|
|
return
|
|
}
|
|
|
|
switch v := iv.(type) {
|
|
// case nil:
|
|
// case Selfer:
|
|
case Raw:
|
|
e.rawBytes(v)
|
|
case reflect.Value:
|
|
e.encodeValue(v, nil)
|
|
|
|
case string:
|
|
e.e.EncodeString(v)
|
|
case bool:
|
|
e.e.EncodeBool(v)
|
|
case int:
|
|
e.e.EncodeInt(int64(v))
|
|
case int8:
|
|
e.e.EncodeInt(int64(v))
|
|
case int16:
|
|
e.e.EncodeInt(int64(v))
|
|
case int32:
|
|
e.e.EncodeInt(int64(v))
|
|
case int64:
|
|
e.e.EncodeInt(v)
|
|
case uint:
|
|
e.e.EncodeUint(uint64(v))
|
|
case uint8:
|
|
e.e.EncodeUint(uint64(v))
|
|
case uint16:
|
|
e.e.EncodeUint(uint64(v))
|
|
case uint32:
|
|
e.e.EncodeUint(uint64(v))
|
|
case uint64:
|
|
e.e.EncodeUint(v)
|
|
case uintptr:
|
|
e.e.EncodeUint(uint64(v))
|
|
case float32:
|
|
e.e.EncodeFloat32(v)
|
|
case float64:
|
|
e.e.EncodeFloat64(v)
|
|
case complex64:
|
|
e.encodeComplex64(v)
|
|
case complex128:
|
|
e.encodeComplex128(v)
|
|
case time.Time:
|
|
e.e.EncodeTime(v)
|
|
case []byte:
|
|
e.e.EncodeStringBytesRaw(v)
|
|
case *Raw:
|
|
e.rawBytes(*v)
|
|
case *string:
|
|
e.e.EncodeString(*v)
|
|
case *bool:
|
|
e.e.EncodeBool(*v)
|
|
case *int:
|
|
e.e.EncodeInt(int64(*v))
|
|
case *int8:
|
|
e.e.EncodeInt(int64(*v))
|
|
case *int16:
|
|
e.e.EncodeInt(int64(*v))
|
|
case *int32:
|
|
e.e.EncodeInt(int64(*v))
|
|
case *int64:
|
|
e.e.EncodeInt(*v)
|
|
case *uint:
|
|
e.e.EncodeUint(uint64(*v))
|
|
case *uint8:
|
|
e.e.EncodeUint(uint64(*v))
|
|
case *uint16:
|
|
e.e.EncodeUint(uint64(*v))
|
|
case *uint32:
|
|
e.e.EncodeUint(uint64(*v))
|
|
case *uint64:
|
|
e.e.EncodeUint(*v)
|
|
case *uintptr:
|
|
e.e.EncodeUint(uint64(*v))
|
|
case *float32:
|
|
e.e.EncodeFloat32(*v)
|
|
case *float64:
|
|
e.e.EncodeFloat64(*v)
|
|
case *complex64:
|
|
e.encodeComplex64(*v)
|
|
case *complex128:
|
|
e.encodeComplex128(*v)
|
|
case *time.Time:
|
|
e.e.EncodeTime(*v)
|
|
case *[]byte:
|
|
if *v == nil {
|
|
e.e.EncodeNil()
|
|
} else {
|
|
e.e.EncodeStringBytesRaw(*v)
|
|
}
|
|
default:
|
|
// we can't check non-predefined types, as they might be a Selfer or extension.
|
|
if skipFastpathTypeSwitchInDirectCall || !fastpathEncodeTypeSwitch(iv, e) {
|
|
e.encodeValue(rv, nil)
|
|
}
|
|
}
|
|
}
|
|
|
|
// encodeValue will encode a value.
|
|
//
|
|
// Note that encodeValue will handle nil in the stream early, so that the
|
|
// subsequent calls i.e. kXXX methods, etc do not have to handle it themselves.
|
|
func (e *Encoder) encodeValue(rv reflect.Value, fn *codecFn) {
|
|
// if a valid fn is passed, it MUST BE for the dereferenced type of rv
|
|
|
|
// MARKER: We check if value is nil here, so that the kXXX method do not have to.
|
|
|
|
var sptr interface{}
|
|
var rvp reflect.Value
|
|
var rvpValid bool
|
|
TOP:
|
|
switch rv.Kind() {
|
|
case reflect.Ptr:
|
|
if rvIsNil(rv) {
|
|
e.e.EncodeNil()
|
|
return
|
|
}
|
|
rvpValid = true
|
|
rvp = rv
|
|
rv = rv.Elem()
|
|
goto TOP
|
|
case reflect.Interface:
|
|
if rvIsNil(rv) {
|
|
e.e.EncodeNil()
|
|
return
|
|
}
|
|
rvpValid = false
|
|
rvp = reflect.Value{}
|
|
rv = rv.Elem()
|
|
goto TOP
|
|
case reflect.Struct:
|
|
if rvpValid && e.h.CheckCircularRef {
|
|
sptr = rv2i(rvp)
|
|
for _, vv := range e.ci {
|
|
if eq4i(sptr, vv) { // error if sptr already seen
|
|
e.errorf("circular reference found: %p, %T", sptr, sptr)
|
|
}
|
|
}
|
|
e.ci = append(e.ci, sptr)
|
|
}
|
|
case reflect.Slice, reflect.Map, reflect.Chan:
|
|
if rvIsNil(rv) {
|
|
e.e.EncodeNil()
|
|
return
|
|
}
|
|
case reflect.Invalid, reflect.Func:
|
|
e.e.EncodeNil()
|
|
return
|
|
}
|
|
|
|
if fn == nil {
|
|
fn = e.h.fn(rv.Type())
|
|
}
|
|
|
|
if !fn.i.addrE { // typically, addrE = false, so check it first
|
|
// keep rv same
|
|
} else if rvpValid {
|
|
rv = rvp
|
|
} else {
|
|
rv = e.addrRV(rv, fn.i.ti.rt, fn.i.ti.ptr)
|
|
}
|
|
fn.fe(e, &fn.i, rv)
|
|
|
|
if sptr != nil { // remove sptr
|
|
e.ci = e.ci[:len(e.ci)-1]
|
|
}
|
|
}
|
|
|
|
// encodeValueNonNil can encode a number, bool, or string
|
|
// OR non-nil values of kind map, slice and chan.
|
|
func (e *Encoder) encodeValueNonNil(rv reflect.Value, fn *codecFn) {
|
|
if fn == nil {
|
|
fn = e.h.fn(rv.Type())
|
|
}
|
|
|
|
if fn.i.addrE { // typically, addrE = false, so check it first
|
|
rv = e.addrRV(rv, fn.i.ti.rt, fn.i.ti.ptr)
|
|
}
|
|
fn.fe(e, &fn.i, rv)
|
|
}
|
|
|
|
// addrRV returns a addressable value which may be readonly
|
|
func (e *Encoder) addrRV(rv reflect.Value, typ, ptrType reflect.Type) (rva reflect.Value) {
|
|
if rv.CanAddr() {
|
|
return rvAddr(rv, ptrType)
|
|
}
|
|
if e.h.NoAddressableReadonly {
|
|
rva = reflect.New(typ)
|
|
rvSetDirect(rva.Elem(), rv)
|
|
return
|
|
}
|
|
return rvAddr(e.perType.AddressableRO(rv), ptrType)
|
|
}
|
|
|
|
func (e *Encoder) marshalUtf8(bs []byte, fnerr error) {
|
|
e.onerror(fnerr)
|
|
if bs == nil {
|
|
e.e.EncodeNil()
|
|
} else {
|
|
e.e.EncodeString(stringView(bs))
|
|
}
|
|
}
|
|
|
|
func (e *Encoder) marshalAsis(bs []byte, fnerr error) {
|
|
e.onerror(fnerr)
|
|
if bs == nil {
|
|
e.e.EncodeNil()
|
|
} else {
|
|
e.encWr.writeb(bs) // e.asis(bs)
|
|
}
|
|
}
|
|
|
|
func (e *Encoder) marshalRaw(bs []byte, fnerr error) {
|
|
e.onerror(fnerr)
|
|
if bs == nil {
|
|
e.e.EncodeNil()
|
|
} else {
|
|
e.e.EncodeStringBytesRaw(bs)
|
|
}
|
|
}
|
|
|
|
func (e *Encoder) rawBytes(vv Raw) {
|
|
v := []byte(vv)
|
|
if !e.h.Raw {
|
|
e.errorf("Raw values cannot be encoded: %v", v)
|
|
}
|
|
e.encWr.writeb(v)
|
|
}
|
|
|
|
func (e *Encoder) wrapErr(v error, err *error) {
|
|
*err = wrapCodecErr(v, e.hh.Name(), 0, true)
|
|
}
|
|
|
|
// ---- container tracker methods
|
|
// Note: We update the .c after calling the callback.
|
|
// This way, the callback can know what the last status was.
|
|
|
|
func (e *Encoder) mapStart(length int) {
|
|
e.e.WriteMapStart(length)
|
|
e.c = containerMapStart
|
|
}
|
|
|
|
func (e *Encoder) mapElemKey() {
|
|
if e.js {
|
|
e.jsondriver().WriteMapElemKey()
|
|
}
|
|
e.c = containerMapKey
|
|
}
|
|
|
|
func (e *Encoder) mapElemValue() {
|
|
if e.js {
|
|
e.jsondriver().WriteMapElemValue()
|
|
}
|
|
e.c = containerMapValue
|
|
}
|
|
|
|
func (e *Encoder) mapEnd() {
|
|
e.e.WriteMapEnd()
|
|
e.c = 0
|
|
}
|
|
|
|
func (e *Encoder) arrayStart(length int) {
|
|
e.e.WriteArrayStart(length)
|
|
e.c = containerArrayStart
|
|
}
|
|
|
|
func (e *Encoder) arrayElem() {
|
|
if e.js {
|
|
e.jsondriver().WriteArrayElem()
|
|
}
|
|
e.c = containerArrayElem
|
|
}
|
|
|
|
func (e *Encoder) arrayEnd() {
|
|
e.e.WriteArrayEnd()
|
|
e.c = 0
|
|
}
|
|
|
|
// ----------
|
|
|
|
func (e *Encoder) haltOnMbsOddLen(length int) {
|
|
if length&1 != 0 { // similar to &1==1 or %2 == 1
|
|
e.errorf("mapBySlice requires even slice length, but got %v", length)
|
|
}
|
|
}
|
|
|
|
func (e *Encoder) atEndOfEncode() {
|
|
// e.e.atEndOfEncode()
|
|
if e.js {
|
|
e.jsondriver().atEndOfEncode()
|
|
}
|
|
}
|
|
|
|
func (e *Encoder) sideEncode(v interface{}, basetype reflect.Type, bs *[]byte) {
|
|
// rv := baseRV(v)
|
|
// e2 := NewEncoderBytes(bs, e.hh)
|
|
// e2.encodeValue(rv, e2.h.fnNoExt(basetype))
|
|
// e2.atEndOfEncode()
|
|
// e2.w().end()
|
|
|
|
defer func(wb bytesEncAppender, bytes bool, c containerState, state interface{}) {
|
|
e.wb = wb
|
|
e.bytes = bytes
|
|
e.c = c
|
|
e.e.restoreState(state)
|
|
}(e.wb, e.bytes, e.c, e.e.captureState())
|
|
|
|
e.wb = bytesEncAppender{encInBytes(bs)[:0], bs}
|
|
e.bytes = true
|
|
e.c = 0
|
|
e.e.resetState()
|
|
|
|
// must call using fnNoExt
|
|
rv := baseRV(v)
|
|
e.encodeValue(rv, e.h.fnNoExt(basetype))
|
|
e.atEndOfEncode()
|
|
e.w().end()
|
|
}
|
|
|
|
func encInBytes(out *[]byte) (in []byte) {
|
|
in = *out
|
|
if in == nil {
|
|
in = make([]byte, defEncByteBufSize)
|
|
}
|
|
return
|
|
}
|
|
|
|
func encStructFieldKey(encName string, ee encDriver, w *encWr,
|
|
keyType valueType, encNameAsciiAlphaNum bool, js bool) {
|
|
// use if-else-if, not switch (which compiles to binary-search)
|
|
// since keyType is typically valueTypeString, branch prediction is pretty good.
|
|
|
|
if keyType == valueTypeString {
|
|
if js && encNameAsciiAlphaNum { // keyType == valueTypeString
|
|
w.writeqstr(encName)
|
|
} else { // keyType == valueTypeString
|
|
ee.EncodeString(encName)
|
|
}
|
|
} else if keyType == valueTypeInt {
|
|
ee.EncodeInt(must.Int(strconv.ParseInt(encName, 10, 64)))
|
|
} else if keyType == valueTypeUint {
|
|
ee.EncodeUint(must.Uint(strconv.ParseUint(encName, 10, 64)))
|
|
} else if keyType == valueTypeFloat {
|
|
ee.EncodeFloat64(must.Float(strconv.ParseFloat(encName, 64)))
|
|
} else {
|
|
halt.errorf("invalid struct key type: %v", keyType)
|
|
}
|
|
}
|