gotosocial/vendor/codeberg.org/gruf/go-mutexes/map.go

236 lines
5.5 KiB
Go
Raw Normal View History

package mutexes
import (
"sync"
"sync/atomic"
"unsafe"
"codeberg.org/gruf/go-mempool"
)
2022-01-24 16:35:13 +00:00
const (
// possible lock types.
lockTypeRead = uint8(1) << 0
lockTypeWrite = uint8(1) << 1
2022-01-24 16:35:13 +00:00
)
// MutexMap is a structure that allows read / write locking
// per key, performing as you'd expect a map[string]*RWMutex
// to perform, without you needing to worry about deadlocks
// between competing read / write locks and the map's own mutex.
// It uses memory pooling for the internal "mutex" (ish) types
// and performs self-eviction of keys.
//
// Under the hood this is achieved using a single mutex for the
// map, state tracking for individual keys, and some sync.Cond{}
// like structures for sleeping / awaking awaiting goroutines.
type MutexMap struct {
mapmu sync.Mutex
mumap hashmap
mupool mempool.UnsafePool
}
// checkInit ensures MutexMap is initialized (UNSAFE).
func (mm *MutexMap) checkInit() {
if mm.mumap.m == nil {
mm.mumap.init(0)
mm.mupool.DirtyFactor = 256
}
}
// Lock acquires a write lock on key in map, returning unlock function.
func (mm *MutexMap) Lock(key string) func() {
return mm.lock(key, lockTypeWrite)
}
// RLock acquires a read lock on key in map, returning runlock function.
func (mm *MutexMap) RLock(key string) func() {
return mm.lock(key, lockTypeRead)
2022-01-24 16:35:13 +00:00
}
func (mm *MutexMap) lock(key string, lt uint8) func() {
// Perform first map lock
// and check initialization
// OUTSIDE the main loop.
mm.mapmu.Lock()
mm.checkInit()
2022-01-24 16:35:13 +00:00
for {
// Check map for mutex.
mu := mm.mumap.Get(key)
2022-01-24 16:35:13 +00:00
if mu == nil {
// Allocate mutex.
mu = mm.acquire()
mm.mumap.Put(key, mu)
2022-01-24 16:35:13 +00:00
}
if !mu.Lock(lt) {
// Wait on mutex unlock, after
// immediately relocking map mu.
mu.WaitRelock()
continue
}
// Done with map.
mm.mapmu.Unlock()
2022-01-24 16:35:13 +00:00
// Return mutex unlock function.
return func() { mm.unlock(key, mu) }
2022-01-24 16:35:13 +00:00
}
}
func (mm *MutexMap) unlock(key string, mu *rwmutex) {
// Get map lock.
mm.mapmu.Lock()
2022-01-24 16:35:13 +00:00
// Unlock mutex.
if !mu.Unlock() {
2022-01-24 16:35:13 +00:00
// Fast path. Mutex still
// used so no map change.
mm.mapmu.Unlock()
return
}
2022-01-24 16:35:13 +00:00
// Mutex fully unlocked
// with zero waiters. Self
// evict and release it.
mm.mumap.Delete(key)
mm.release(mu)
// Check if compaction
// needed.
mm.mumap.Compact()
// Done with map.
mm.mapmu.Unlock()
}
// acquire will acquire mutex from memory pool, or alloc new.
func (mm *MutexMap) acquire() *rwmutex {
if ptr := mm.mupool.Get(); ptr != nil {
return (*rwmutex)(ptr)
}
mu := new(rwmutex)
mu.c.L = &mm.mapmu
return mu
2022-01-24 16:35:13 +00:00
}
// release will release given mutex to memory pool.
func (mm *MutexMap) release(mu *rwmutex) {
ptr := unsafe.Pointer(mu)
mm.mupool.Put(ptr)
2022-01-24 16:35:13 +00:00
}
// rwmutex represents a RW mutex when used correctly within
// a MapMutex. It should ONLY be access when protected by
// the outer map lock, except for the 'notifyList' which is
// a runtime internal structure borrowed from the sync.Cond{}.
//
// this functions very similarly to a sync.Cond{}, but with
// lock state tracking, and returning on 'Broadcast()' whether
// any goroutines were actually awoken. it also has a less
// confusing API than sync.Cond{} with the outer locking
// mechanism we use, otherwise all Cond{}.L would reference
// the same outer map mutex.
type rwmutex struct {
c sync.Cond // 'trigger' mechanism
l int32 // no. locks
t uint8 // lock type
2022-01-24 16:35:13 +00:00
}
// Lock will lock the mutex for given lock type, in the
// sense that it will update the internal state tracker
// accordingly. Return value is true on successful lock.
func (mu *rwmutex) Lock(lt uint8) bool {
switch mu.t {
case lockTypeRead:
// already read locked,
// only permit more reads.
if lt != lockTypeRead {
return false
}
case lockTypeWrite:
// already write locked,
// no other locks allowed.
return false
default:
// Fully unlocked,
// set incoming type.
mu.t = lt
}
// Update
// count.
mu.l++
return true
}
// Unlock will unlock the mutex, in the sense that it
// will update the internal state tracker accordingly.
// On totally unlocked state, it will awaken all
// sleeping goroutines waiting on this mutex.
func (mu *rwmutex) Unlock() bool {
switch mu.l--; {
case mu.l > 0 && mu.t == lockTypeWrite:
panic("BUG: multiple writer locks")
case mu.l < 0:
panic("BUG: negative lock count")
case mu.l == 0:
// Fully unlocked.
mu.t = 0
// NOTE: must remain in
// sync with runtime.notifyList{}.
//
// goexperiment.staticlockranking
// does change it slightly, but
// this does not alter the first
// 2 fields which are all we need.
type notifyList struct {
_ uint32
notify uint32
// ... other fields
}
// NOTE: must remain in
// sync with sync.Cond{}.
type syncCond struct {
_ struct{}
L sync.Locker
n notifyList
// ... other fields
}
// Awake all blocked goroutines and check
// for change in the last notified ticket.
cptr := (*syncCond)(unsafe.Pointer(&mu.c))
before := atomic.LoadUint32(&cptr.n.notify)
mu.c.Broadcast() // awakes all blocked!
after := atomic.LoadUint32(&cptr.n.notify)
// If ticket changed, this indicates
// AT LEAST one goroutine was awoken.
//
// (before != after) => (waiters > 0)
// (before == after) => (waiters = 0)
return (before == after)
default:
// i.e. mutex still
// locked by others.
return false
}
}
// WaitRelock expects a mutex to be passed in, already in the
// locked state. It incr the notifyList waiter count before
// unlocking the outer mutex and blocking on notifyList wait.
// On awake it will decr wait count and relock outer mutex.
func (mu *rwmutex) WaitRelock() { mu.c.Wait() }