mirror of
https://github.com/superseriousbusiness/gotosocial.git
synced 2024-11-01 15:00:00 +00:00
242 lines
9.4 KiB
Go
242 lines
9.4 KiB
Go
|
// Copyright 2018 Google Inc. All rights reserved.
|
||
|
//
|
||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
// you may not use this file except in compliance with the License.
|
||
|
// You may obtain a copy of the License at
|
||
|
//
|
||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||
|
//
|
||
|
// Unless required by applicable law or agreed to in writing, software
|
||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
// See the License for the specific language governing permissions and
|
||
|
// limitations under the License.
|
||
|
|
||
|
package s2
|
||
|
|
||
|
import (
|
||
|
"math"
|
||
|
|
||
|
"github.com/golang/geo/r2"
|
||
|
"github.com/golang/geo/s1"
|
||
|
)
|
||
|
|
||
|
// Projection defines an interface for different ways of mapping between s2 and r2 Points.
|
||
|
// It can also define the coordinate wrapping behavior along each axis.
|
||
|
type Projection interface {
|
||
|
// Project converts a point on the sphere to a projected 2D point.
|
||
|
Project(p Point) r2.Point
|
||
|
|
||
|
// Unproject converts a projected 2D point to a point on the sphere.
|
||
|
//
|
||
|
// If wrapping is defined for a given axis (see below), then this method
|
||
|
// should accept any real number for the corresponding coordinate.
|
||
|
Unproject(p r2.Point) Point
|
||
|
|
||
|
// FromLatLng is a convenience function equivalent to Project(LatLngToPoint(ll)),
|
||
|
// but the implementation is more efficient.
|
||
|
FromLatLng(ll LatLng) r2.Point
|
||
|
|
||
|
// ToLatLng is a convenience function equivalent to LatLngFromPoint(Unproject(p)),
|
||
|
// but the implementation is more efficient.
|
||
|
ToLatLng(p r2.Point) LatLng
|
||
|
|
||
|
// Interpolate returns the point obtained by interpolating the given
|
||
|
// fraction of the distance along the line from A to B.
|
||
|
// Fractions < 0 or > 1 result in extrapolation instead.
|
||
|
Interpolate(f float64, a, b r2.Point) r2.Point
|
||
|
|
||
|
// WrapDistance reports the coordinate wrapping distance along each axis.
|
||
|
// If this value is non-zero for a given axis, the coordinates are assumed
|
||
|
// to "wrap" with the given period. For example, if WrapDistance.Y == 360
|
||
|
// then (x, y) and (x, y + 360) should map to the same Point.
|
||
|
//
|
||
|
// This information is used to ensure that edges takes the shortest path
|
||
|
// between two given points. For example, if coordinates represent
|
||
|
// (latitude, longitude) pairs in degrees and WrapDistance().Y == 360,
|
||
|
// then the edge (5:179, 5:-179) would be interpreted as spanning 2 degrees
|
||
|
// of longitude rather than 358 degrees.
|
||
|
//
|
||
|
// If a given axis does not wrap, its WrapDistance should be set to zero.
|
||
|
WrapDistance() r2.Point
|
||
|
|
||
|
// WrapDestination that wraps the coordinates of B if necessary in order to
|
||
|
// obtain the shortest edge AB. For example, suppose that A = [170, 20],
|
||
|
// B = [-170, 20], and the projection wraps so that [x, y] == [x + 360, y].
|
||
|
// Then this function would return [190, 20] for point B (reducing the edge
|
||
|
// length in the "x" direction from 340 to 20).
|
||
|
WrapDestination(a, b r2.Point) r2.Point
|
||
|
|
||
|
// We do not support implementations of this interface outside this package.
|
||
|
privateInterface()
|
||
|
}
|
||
|
|
||
|
// PlateCarreeProjection defines the "plate carree" (square plate) projection,
|
||
|
// which converts points on the sphere to (longitude, latitude) pairs.
|
||
|
// Coordinates can be scaled so that they represent radians, degrees, etc, but
|
||
|
// the projection is always centered around (latitude=0, longitude=0).
|
||
|
//
|
||
|
// Note that (x, y) coordinates are backwards compared to the usual (latitude,
|
||
|
// longitude) ordering, in order to match the usual convention for graphs in
|
||
|
// which "x" is horizontal and "y" is vertical.
|
||
|
type PlateCarreeProjection struct {
|
||
|
xWrap float64
|
||
|
toRadians float64 // Multiplier to convert coordinates to radians.
|
||
|
fromRadians float64 // Multiplier to convert coordinates from radians.
|
||
|
}
|
||
|
|
||
|
// NewPlateCarreeProjection constructs a plate carree projection where the
|
||
|
// x-coordinates (lng) span [-xScale, xScale] and the y coordinates (lat)
|
||
|
// span [-xScale/2, xScale/2]. For example if xScale==180 then the x
|
||
|
// range is [-180, 180] and the y range is [-90, 90].
|
||
|
//
|
||
|
// By default coordinates are expressed in radians, i.e. the x range is
|
||
|
// [-Pi, Pi] and the y range is [-Pi/2, Pi/2].
|
||
|
func NewPlateCarreeProjection(xScale float64) Projection {
|
||
|
return &PlateCarreeProjection{
|
||
|
xWrap: 2 * xScale,
|
||
|
toRadians: math.Pi / xScale,
|
||
|
fromRadians: xScale / math.Pi,
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Project converts a point on the sphere to a projected 2D point.
|
||
|
func (p *PlateCarreeProjection) Project(pt Point) r2.Point {
|
||
|
return p.FromLatLng(LatLngFromPoint(pt))
|
||
|
}
|
||
|
|
||
|
// Unproject converts a projected 2D point to a point on the sphere.
|
||
|
func (p *PlateCarreeProjection) Unproject(pt r2.Point) Point {
|
||
|
return PointFromLatLng(p.ToLatLng(pt))
|
||
|
}
|
||
|
|
||
|
// FromLatLng returns the LatLng projected into an R2 Point.
|
||
|
func (p *PlateCarreeProjection) FromLatLng(ll LatLng) r2.Point {
|
||
|
return r2.Point{
|
||
|
X: p.fromRadians * ll.Lng.Radians(),
|
||
|
Y: p.fromRadians * ll.Lat.Radians(),
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ToLatLng returns the LatLng projected from the given R2 Point.
|
||
|
func (p *PlateCarreeProjection) ToLatLng(pt r2.Point) LatLng {
|
||
|
return LatLng{
|
||
|
Lat: s1.Angle(p.toRadians * pt.Y),
|
||
|
Lng: s1.Angle(p.toRadians * math.Remainder(pt.X, p.xWrap)),
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Interpolate returns the point obtained by interpolating the given
|
||
|
// fraction of the distance along the line from A to B.
|
||
|
func (p *PlateCarreeProjection) Interpolate(f float64, a, b r2.Point) r2.Point {
|
||
|
return a.Mul(1 - f).Add(b.Mul(f))
|
||
|
}
|
||
|
|
||
|
// WrapDistance reports the coordinate wrapping distance along each axis.
|
||
|
func (p *PlateCarreeProjection) WrapDistance() r2.Point {
|
||
|
return r2.Point{p.xWrap, 0}
|
||
|
}
|
||
|
|
||
|
// WrapDestination wraps the points if needed to get the shortest edge.
|
||
|
func (p *PlateCarreeProjection) WrapDestination(a, b r2.Point) r2.Point {
|
||
|
return wrapDestination(a, b, p.WrapDistance)
|
||
|
}
|
||
|
|
||
|
func (p *PlateCarreeProjection) privateInterface() {}
|
||
|
|
||
|
// MercatorProjection defines the spherical Mercator projection. Google Maps
|
||
|
// uses this projection together with WGS84 coordinates, in which case it is
|
||
|
// known as the "Web Mercator" projection (see Wikipedia). This class makes
|
||
|
// no assumptions regarding the coordinate system of its input points, but
|
||
|
// simply applies the spherical Mercator projection to them.
|
||
|
//
|
||
|
// The Mercator projection is finite in width (x) but infinite in height (y).
|
||
|
// "x" corresponds to longitude, and spans a finite range such as [-180, 180]
|
||
|
// (with coordinate wrapping), while "y" is a function of latitude and spans
|
||
|
// an infinite range. (As "y" coordinates get larger, points get closer to
|
||
|
// the north pole but never quite reach it.) The north and south poles have
|
||
|
// infinite "y" values. (Note that this will cause problems if you tessellate
|
||
|
// a Mercator edge where one endpoint is a pole. If you need to do this, clip
|
||
|
// the edge first so that the "y" coordinate is no more than about 5 * maxX.)
|
||
|
type MercatorProjection struct {
|
||
|
xWrap float64
|
||
|
toRadians float64 // Multiplier to convert coordinates to radians.
|
||
|
fromRadians float64 // Multiplier to convert coordinates from radians.
|
||
|
}
|
||
|
|
||
|
// NewMercatorProjection constructs a Mercator projection with the given maximum
|
||
|
// longitude axis value corresponding to a range of [-maxLng, maxLng].
|
||
|
// The horizontal and vertical axes are scaled equally.
|
||
|
func NewMercatorProjection(maxLng float64) Projection {
|
||
|
return &MercatorProjection{
|
||
|
xWrap: 2 * maxLng,
|
||
|
toRadians: math.Pi / maxLng,
|
||
|
fromRadians: maxLng / math.Pi,
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Project converts a point on the sphere to a projected 2D point.
|
||
|
func (p *MercatorProjection) Project(pt Point) r2.Point {
|
||
|
return p.FromLatLng(LatLngFromPoint(pt))
|
||
|
}
|
||
|
|
||
|
// Unproject converts a projected 2D point to a point on the sphere.
|
||
|
func (p *MercatorProjection) Unproject(pt r2.Point) Point {
|
||
|
return PointFromLatLng(p.ToLatLng(pt))
|
||
|
}
|
||
|
|
||
|
// FromLatLng returns the LatLng projected into an R2 Point.
|
||
|
func (p *MercatorProjection) FromLatLng(ll LatLng) r2.Point {
|
||
|
// This formula is more accurate near zero than the log(tan()) version.
|
||
|
// Note that latitudes of +/- 90 degrees yield "y" values of +/- infinity.
|
||
|
sinPhi := math.Sin(float64(ll.Lat))
|
||
|
y := 0.5 * math.Log((1+sinPhi)/(1-sinPhi))
|
||
|
return r2.Point{p.fromRadians * float64(ll.Lng), p.fromRadians * y}
|
||
|
}
|
||
|
|
||
|
// ToLatLng returns the LatLng projected from the given R2 Point.
|
||
|
func (p *MercatorProjection) ToLatLng(pt r2.Point) LatLng {
|
||
|
// This formula is more accurate near zero than the atan(exp()) version.
|
||
|
x := p.toRadians * math.Remainder(pt.X, p.xWrap)
|
||
|
k := math.Exp(2 * p.toRadians * pt.Y)
|
||
|
var y float64
|
||
|
if math.IsInf(k, 0) {
|
||
|
y = math.Pi / 2
|
||
|
} else {
|
||
|
y = math.Asin((k - 1) / (k + 1))
|
||
|
}
|
||
|
return LatLng{s1.Angle(y), s1.Angle(x)}
|
||
|
}
|
||
|
|
||
|
// Interpolate returns the point obtained by interpolating the given
|
||
|
// fraction of the distance along the line from A to B.
|
||
|
func (p *MercatorProjection) Interpolate(f float64, a, b r2.Point) r2.Point {
|
||
|
return a.Mul(1 - f).Add(b.Mul(f))
|
||
|
}
|
||
|
|
||
|
// WrapDistance reports the coordinate wrapping distance along each axis.
|
||
|
func (p *MercatorProjection) WrapDistance() r2.Point {
|
||
|
return r2.Point{p.xWrap, 0}
|
||
|
}
|
||
|
|
||
|
// WrapDestination wraps the points if needed to get the shortest edge.
|
||
|
func (p *MercatorProjection) WrapDestination(a, b r2.Point) r2.Point {
|
||
|
return wrapDestination(a, b, p.WrapDistance)
|
||
|
}
|
||
|
|
||
|
func (p *MercatorProjection) privateInterface() {}
|
||
|
|
||
|
func wrapDestination(a, b r2.Point, wrapDistance func() r2.Point) r2.Point {
|
||
|
wrap := wrapDistance()
|
||
|
x := b.X
|
||
|
y := b.Y
|
||
|
// The code below ensures that "b" is unmodified unless wrapping is required.
|
||
|
if wrap.X > 0 && math.Abs(x-a.X) > 0.5*wrap.X {
|
||
|
x = a.X + math.Remainder(x-a.X, wrap.X)
|
||
|
}
|
||
|
if wrap.Y > 0 && math.Abs(y-a.Y) > 0.5*wrap.Y {
|
||
|
y = a.Y + math.Remainder(y-a.Y, wrap.Y)
|
||
|
}
|
||
|
return r2.Point{x, y}
|
||
|
}
|