1397 lines
55 KiB
C
1397 lines
55 KiB
C
/*
|
|
* Copyright (c) 2019-2021 shchmue
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "keys.h"
|
|
|
|
#include "../../keygen/tsec_keygen.h"
|
|
|
|
#include "../config.h"
|
|
#include <display/di.h>
|
|
#include "../frontend/gui.h"
|
|
#include <gfx_utils.h>
|
|
#include "../gfx/tui.h"
|
|
#include "../hos/hos.h"
|
|
#include <libs/fatfs/ff.h>
|
|
#include <libs/nx_savedata/save.h>
|
|
#include <mem/heap.h>
|
|
#include <mem/minerva.h>
|
|
#include <mem/sdram.h>
|
|
#include <sec/se.h>
|
|
#include <sec/se_t210.h>
|
|
#include <sec/tsec.h>
|
|
#include <soc/fuse.h>
|
|
#include <mem/smmu.h>
|
|
#include <soc/t210.h>
|
|
#include "../storage/emummc.h"
|
|
#include "../storage/nx_emmc.h"
|
|
#include "../storage/nx_emmc_bis.h"
|
|
#include <storage/nx_sd.h>
|
|
#include <storage/sdmmc.h>
|
|
#include <utils/btn.h>
|
|
#include <utils/list.h>
|
|
#include <utils/sprintf.h>
|
|
#include <utils/util.h>
|
|
|
|
#include "key_sources.inl"
|
|
|
|
#include <string.h>
|
|
|
|
extern hekate_config h_cfg;
|
|
|
|
static u32 _key_count = 0, _titlekey_count = 0;
|
|
static u32 start_time, end_time;
|
|
u32 color_idx = 0;
|
|
|
|
static ALWAYS_INLINE u32 _read_le_u32(const void *buffer, u32 offset) {
|
|
return (*(u8*)(buffer + offset + 0) ) |
|
|
(*(u8*)(buffer + offset + 1) << 0x08) |
|
|
(*(u8*)(buffer + offset + 2) << 0x10) |
|
|
(*(u8*)(buffer + offset + 3) << 0x18);
|
|
}
|
|
|
|
static ALWAYS_INLINE u32 _read_be_u32(const void *buffer, u32 offset) {
|
|
return (*(u8*)(buffer + offset + 3) ) |
|
|
(*(u8*)(buffer + offset + 2) << 0x08) |
|
|
(*(u8*)(buffer + offset + 1) << 0x10) |
|
|
(*(u8*)(buffer + offset + 0) << 0x18);
|
|
}
|
|
|
|
// key functions
|
|
static int _key_exists(const void *data) { return memcmp(data, "\x00\x00\x00\x00\x00\x00\x00\x00", 8) != 0; };
|
|
static void _save_key(const char *name, const void *data, u32 len, char *outbuf);
|
|
static void _save_key_family(const char *name, const void *data, u32 start_key, u32 num_keys, u32 len, char *outbuf);
|
|
static void _generate_aes_kek(u32 ks, key_derivation_ctx_t *keys, void *out_kek, const void *kek_source, u32 generation, u32 option);
|
|
static void _generate_aes_key(u32 ks, key_derivation_ctx_t *keys, void *out_key, u32 key_size, const void *access_key, const void *key_source);
|
|
static void _load_aes_key(u32 ks, void *out_key, const void *access_key, const void *key_source);
|
|
static void _get_device_unique_data_key(u32 ks, void *out_key, const void *access_key, const void *key_source);
|
|
static void _decrypt_aes_key(u32 ks, key_derivation_ctx_t *keys, void *out_key, const void *key_source, u32 generation, u32 option);
|
|
static void _generate_specific_aes_key(u32 ks, key_derivation_ctx_t *keys, void *out_key, const void *key_source, u32 generation);
|
|
static void _get_device_key(u32 ks, key_derivation_ctx_t *keys, void *out_device_key, u32 generation);
|
|
static void _ghash(u32 ks, void *dst, const void *src, u32 src_size, const void *j_block, bool encrypt);
|
|
// titlekey functions
|
|
static bool _test_rsa_keypair(const void *E, const void *D, const void *N);
|
|
|
|
static void _derive_master_key_mariko(key_derivation_ctx_t *keys, bool is_dev) {
|
|
// Relies on the SBK being properly set in slot 14
|
|
se_aes_crypt_block_ecb(KS_SECURE_BOOT, DECRYPT, keys->device_key_4x, device_master_key_source_kek_source);
|
|
// Derive all master keys based on Mariko KEK
|
|
for (u32 i = KB_FIRMWARE_VERSION_600; i < ARRAY_SIZE(mariko_master_kek_sources) + KB_FIRMWARE_VERSION_600; i++) {
|
|
// Relies on the Mariko KEK being properly set in slot 12
|
|
se_aes_crypt_block_ecb(KS_MARIKO_KEK, DECRYPT, keys->master_kek[i], is_dev ? &mariko_master_kek_sources_dev[i - KB_FIRMWARE_VERSION_600] : &mariko_master_kek_sources[i - KB_FIRMWARE_VERSION_600]);
|
|
_load_aes_key(KS_AES_ECB, keys->master_key[i], keys->master_kek[i], master_key_source);
|
|
}
|
|
}
|
|
|
|
static int _run_ams_keygen(key_derivation_ctx_t *keys) {
|
|
tsec_ctxt_t tsec_ctxt;
|
|
tsec_ctxt.fw = tsec_keygen;
|
|
tsec_ctxt.size = sizeof(tsec_keygen);
|
|
tsec_ctxt.type = TSEC_FW_TYPE_NEW;
|
|
|
|
u32 retries = 0;
|
|
while (tsec_query(keys->temp_key, &tsec_ctxt) < 0) {
|
|
retries++;
|
|
if (retries > 15) {
|
|
EPRINTF("Failed to run keygen.");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void _derive_master_keys_from_latest_key(key_derivation_ctx_t *keys, bool is_dev) {
|
|
if (!h_cfg.t210b01) {
|
|
u32 tsec_root_key_slot = is_dev ? 11 : 13;
|
|
// Derive all master keys based on current root key
|
|
for (u32 i = KB_FIRMWARE_VERSION_810 - KB_FIRMWARE_VERSION_620; i < ARRAY_SIZE(master_kek_sources); i++) {
|
|
se_aes_crypt_block_ecb(tsec_root_key_slot, DECRYPT, keys->master_kek[i + KB_FIRMWARE_VERSION_620], master_kek_sources[i]);
|
|
_load_aes_key(KS_AES_ECB, keys->master_key[i + KB_FIRMWARE_VERSION_620], keys->master_kek[i + KB_FIRMWARE_VERSION_620], master_key_source);
|
|
}
|
|
}
|
|
|
|
// Derive all lower master keys
|
|
for (u32 i = KB_FIRMWARE_VERSION_MAX; i > 0; i--) {
|
|
_load_aes_key(KS_AES_ECB, keys->master_key[i - 1], keys->master_key[i], is_dev ? master_key_vectors_dev[i] : master_key_vectors[i]);
|
|
}
|
|
_load_aes_key(KS_AES_ECB, keys->temp_key, keys->master_key[0], is_dev ? master_key_vectors_dev[0] : master_key_vectors[0]);
|
|
|
|
if (_key_exists(keys->temp_key)) {
|
|
EPRINTFARGS("Unable to derive master keys for %s.", is_dev ? "dev" : "prod");
|
|
memset(keys->master_key, 0, sizeof(keys->master_key));
|
|
}
|
|
}
|
|
|
|
static void _derive_keyblob_keys(key_derivation_ctx_t *keys) {
|
|
u8 *keyblob_block = (u8 *)calloc(KB_FIRMWARE_VERSION_600 + 1, NX_EMMC_BLOCKSIZE);
|
|
u32 keyblob_mac[AES_128_KEY_SIZE / 4] = {0};
|
|
bool have_keyblobs = true;
|
|
|
|
if (FUSE(FUSE_PRIVATE_KEY0) == 0xFFFFFFFF) {
|
|
u8 *aes_keys = (u8 *)calloc(SZ_4K, 1);
|
|
se_get_aes_keys(aes_keys + SZ_2K, aes_keys, AES_128_KEY_SIZE);
|
|
memcpy(keys->sbk, aes_keys + 14 * AES_128_KEY_SIZE, AES_128_KEY_SIZE);
|
|
free(aes_keys);
|
|
} else {
|
|
keys->sbk[0] = FUSE(FUSE_PRIVATE_KEY0);
|
|
keys->sbk[1] = FUSE(FUSE_PRIVATE_KEY1);
|
|
keys->sbk[2] = FUSE(FUSE_PRIVATE_KEY2);
|
|
keys->sbk[3] = FUSE(FUSE_PRIVATE_KEY3);
|
|
}
|
|
|
|
if (!emmc_storage.initialized) {
|
|
have_keyblobs = false;
|
|
} else if (!emummc_storage_read(KEYBLOB_OFFSET / NX_EMMC_BLOCKSIZE, KB_FIRMWARE_VERSION_600 + 1, keyblob_block)) {
|
|
EPRINTF("Unable to read keyblobs.");
|
|
have_keyblobs = false;
|
|
} else {
|
|
have_keyblobs = true;
|
|
}
|
|
|
|
encrypted_keyblob_t *current_keyblob = (encrypted_keyblob_t *)keyblob_block;
|
|
for (u32 i = 0; i <= KB_FIRMWARE_VERSION_600; i++, current_keyblob++) {
|
|
minerva_periodic_training();
|
|
se_aes_crypt_block_ecb(KS_TSEC, DECRYPT, keys->keyblob_key[i], keyblob_key_sources[i]);
|
|
se_aes_crypt_block_ecb(KS_SECURE_BOOT, DECRYPT, keys->keyblob_key[i], keys->keyblob_key[i]);
|
|
_load_aes_key(KS_AES_ECB, keys->keyblob_mac_key[i], keys->keyblob_key[i], keyblob_mac_key_source);
|
|
if (i == 0) {
|
|
se_aes_crypt_block_ecb(KS_AES_ECB, DECRYPT, keys->device_key, per_console_key_source);
|
|
se_aes_crypt_block_ecb(KS_AES_ECB, DECRYPT, keys->device_key_4x, device_master_key_source_kek_source);
|
|
}
|
|
|
|
if (!have_keyblobs) {
|
|
continue;
|
|
}
|
|
|
|
// Verify keyblob is not corrupt
|
|
se_aes_key_set(KS_AES_CMAC, keys->keyblob_mac_key[i], sizeof(keys->keyblob_mac_key[i]));
|
|
se_aes_cmac(KS_AES_CMAC, keyblob_mac, sizeof(keyblob_mac), current_keyblob->iv, sizeof(current_keyblob->iv) + sizeof(keyblob_t));
|
|
if (memcmp(current_keyblob->cmac, keyblob_mac, sizeof(keyblob_mac)) != 0) {
|
|
EPRINTFARGS("Keyblob %x corrupt.", i);
|
|
continue;
|
|
}
|
|
|
|
// Decrypt keyblobs
|
|
se_aes_key_set(KS_AES_CTR, keys->keyblob_key[i], sizeof(keys->keyblob_key[i]));
|
|
se_aes_crypt_ctr(KS_AES_CTR, &keys->keyblob[i], sizeof(keyblob_t), ¤t_keyblob->key_data, sizeof(keyblob_t), current_keyblob->iv);
|
|
|
|
memcpy(keys->package1_key[i], keys->keyblob[i].package1_key, sizeof(keys->package1_key[i]));
|
|
memcpy(keys->master_kek[i], keys->keyblob[i].master_kek, sizeof(keys->master_kek[i]));
|
|
if (!_key_exists(keys->master_key[i])) {
|
|
_load_aes_key(KS_AES_ECB, keys->master_key[i], keys->master_kek[i], master_key_source);
|
|
}
|
|
}
|
|
free(keyblob_block);
|
|
}
|
|
|
|
static void _derive_bis_keys(key_derivation_ctx_t *keys) {
|
|
minerva_periodic_training();
|
|
u32 generation = fuse_read_odm_keygen_rev();
|
|
|
|
if (!(_key_exists(keys->device_key) || (generation && _key_exists(keys->master_key[0]) && _key_exists(keys->device_key_4x)))) {
|
|
return;
|
|
}
|
|
_generate_specific_aes_key(KS_AES_ECB, keys, &keys->bis_key[0], bis_key_sources[0], generation);
|
|
u32 access_key[AES_128_KEY_SIZE / 4] = {0};
|
|
const u32 option = GET_IS_DEVICE_UNIQUE(IS_DEVICE_UNIQUE);
|
|
_generate_aes_kek(KS_AES_ECB, keys, access_key, bis_kek_source, generation, option);
|
|
_generate_aes_key(KS_AES_ECB, keys, keys->bis_key[1], sizeof(keys->bis_key[1]), access_key, bis_key_sources[1]);
|
|
_generate_aes_key(KS_AES_ECB, keys, keys->bis_key[2], sizeof(keys->bis_key[2]), access_key, bis_key_sources[2]);
|
|
memcpy(keys->bis_key[3], keys->bis_key[2], sizeof(keys->bis_key[3]));
|
|
}
|
|
|
|
static void _derive_non_unique_keys(key_derivation_ctx_t *keys, bool is_dev) {
|
|
if (_key_exists(keys->master_key[0])) {
|
|
const u32 generation = 0;
|
|
const u32 option = GET_IS_DEVICE_UNIQUE(NOT_DEVICE_UNIQUE);
|
|
_generate_aes_kek(KS_AES_ECB, keys, keys->temp_key, header_kek_source, generation, option);
|
|
_generate_aes_key(KS_AES_ECB, keys, keys->header_key, sizeof(keys->header_key), keys->temp_key, header_key_source);
|
|
}
|
|
}
|
|
|
|
static void _derive_eticket_rsa_kek(u32 ks, key_derivation_ctx_t *keys, void *out_rsa_kek, const void *kek_source, u32 generation, u32 option) {
|
|
void *access_key = keys->temp_key;
|
|
_generate_aes_kek(ks, keys, access_key, eticket_rsa_kekek_source, generation, option);
|
|
_get_device_unique_data_key(ks, out_rsa_kek, access_key, kek_source);
|
|
|
|
}
|
|
|
|
static void _derive_ssl_rsa_kek(u32 ks, key_derivation_ctx_t *keys, void *out_rsa_kek, const void *kekek_source, const void *kek_source, u32 generation, u32 option) {
|
|
void *access_key = keys->temp_key;
|
|
_generate_aes_kek(ks, keys, access_key, kekek_source, generation, option);
|
|
_get_device_unique_data_key(ks, out_rsa_kek, access_key, kek_source);
|
|
}
|
|
|
|
static void _derive_misc_keys(key_derivation_ctx_t *keys, bool is_dev) {
|
|
if (_key_exists(keys->device_key) || (_key_exists(keys->master_key[0]) && _key_exists(keys->device_key_4x))) {
|
|
void *access_key = keys->temp_key;
|
|
const u32 generation = 0;
|
|
const u32 option = GET_IS_DEVICE_UNIQUE(IS_DEVICE_UNIQUE);
|
|
_generate_aes_kek(KS_AES_ECB, keys, access_key, save_mac_kek_source, generation, option);
|
|
_load_aes_key(KS_AES_ECB, keys->save_mac_key, access_key, save_mac_key_source);
|
|
}
|
|
|
|
if (_key_exists(keys->master_key[0])) {
|
|
const void *eticket_kek_source = is_dev ? eticket_rsa_kek_source_dev : eticket_rsa_kek_source;
|
|
const u32 generation = 0;
|
|
u32 option = SET_SEAL_KEY_INDEX(SEAL_KEY_IMPORT_ES_DEVICE_KEY);
|
|
_derive_eticket_rsa_kek(KS_AES_ECB, keys, keys->eticket_rsa_kek, eticket_kek_source, generation, option);
|
|
|
|
const void *ssl_kek_source = is_dev ? ssl_rsa_kek_source_dev : ssl_rsa_kek_source;
|
|
option = SET_SEAL_KEY_INDEX(SEAL_KEY_DECRYPT_DEVICE_UNIQUE_DATA);
|
|
_derive_ssl_rsa_kek(KS_AES_ECB, keys, keys->ssl_rsa_kek, ssl_rsa_kekek_source, ssl_kek_source, generation, option);
|
|
}
|
|
}
|
|
|
|
static void _derive_per_generation_keys(key_derivation_ctx_t *keys) {
|
|
for (u32 generation = 0; generation < ARRAY_SIZE(keys->master_key); generation++) {
|
|
if (!_key_exists(keys->master_key[generation]))
|
|
continue;
|
|
for (u32 source_type = 0; source_type < ARRAY_SIZE(key_area_key_sources); source_type++) {
|
|
void *access_key = keys->temp_key;
|
|
const u32 option = GET_IS_DEVICE_UNIQUE(NOT_DEVICE_UNIQUE);
|
|
_generate_aes_kek(KS_AES_ECB, keys, access_key, key_area_key_sources[source_type], generation + 1, option);
|
|
_load_aes_key(KS_AES_ECB, keys->key_area_key[source_type][generation], access_key, aes_key_generation_source);
|
|
}
|
|
_load_aes_key(KS_AES_ECB, keys->package2_key[generation], keys->master_key[generation], package2_key_source);
|
|
_load_aes_key(KS_AES_ECB, keys->titlekek[generation], keys->master_key[generation], titlekek_source);
|
|
}
|
|
}
|
|
|
|
static bool _get_titlekeys_from_save(u32 buf_size, const u8 *save_mac_key, titlekey_buffer_t *titlekey_buffer, rsa_keypair_t *rsa_keypair) {
|
|
FIL fp;
|
|
u64 br = buf_size;
|
|
u64 offset = 0;
|
|
u32 file_tkey_count = 0;
|
|
u32 save_x = gfx_con.x, save_y = gfx_con.y;
|
|
bool is_personalized = rsa_keypair != NULL;
|
|
u32 start_titlekey_count = _titlekey_count;
|
|
char titlekey_save_path[32] = "bis:/save/80000000000000E1";
|
|
|
|
if (is_personalized) {
|
|
titlekey_save_path[25] = '2';
|
|
gfx_printf("\n%kPersonalized... ", colors[color_idx % 6]);
|
|
} else {
|
|
gfx_printf("\n%kCommon... ", colors[color_idx % 6]);
|
|
}
|
|
|
|
if (f_open(&fp, titlekey_save_path, FA_READ | FA_OPEN_EXISTING)) {
|
|
EPRINTF("Unable to open e1 save. Skipping.");
|
|
return false;
|
|
}
|
|
|
|
save_ctx_t *save_ctx = calloc(1, sizeof(save_ctx_t));
|
|
save_init(save_ctx, &fp, save_mac_key, 0);
|
|
|
|
bool save_process_success = save_process(save_ctx);
|
|
TPRINTF("\n Save process...");
|
|
|
|
if (!save_process_success) {
|
|
EPRINTF("Failed to process es save.");
|
|
f_close(&fp);
|
|
save_free_contexts(save_ctx);
|
|
free(save_ctx);
|
|
return false;
|
|
}
|
|
|
|
const char ticket_bin_path[32] = "/ticket.bin";
|
|
const char ticket_list_bin_path[32] = "/ticket_list.bin";
|
|
save_data_file_ctx_t ticket_file;
|
|
|
|
if (!save_open_file(save_ctx, &ticket_file, ticket_list_bin_path, OPEN_MODE_READ)) {
|
|
EPRINTF("Unable to locate ticket_list.bin in save.");
|
|
f_close(&fp);
|
|
save_free_contexts(save_ctx);
|
|
free(save_ctx);
|
|
return false;
|
|
}
|
|
|
|
bool terminator_reached = false;
|
|
while (offset < ticket_file.size && !terminator_reached) {
|
|
if (!save_data_file_read(&ticket_file, &br, offset, titlekey_buffer->read_buffer, buf_size) || titlekey_buffer->read_buffer[0] == 0 || br != buf_size)
|
|
break;
|
|
offset += br;
|
|
minerva_periodic_training();
|
|
ticket_record_t *curr_ticket_record = (ticket_record_t *)titlekey_buffer->read_buffer;
|
|
for (u32 i = 0; i < buf_size; i += sizeof(ticket_record_t), curr_ticket_record++) {
|
|
if (curr_ticket_record->rights_id[0] == 0xFF) {
|
|
terminator_reached = true;
|
|
break;
|
|
}
|
|
file_tkey_count++;
|
|
}
|
|
}
|
|
TPRINTF(" Count keys...");
|
|
|
|
if (!save_open_file(save_ctx, &ticket_file, ticket_bin_path, OPEN_MODE_READ)) {
|
|
EPRINTF("Unable to locate ticket.bin in save.");
|
|
f_close(&fp);
|
|
save_free_contexts(save_ctx);
|
|
free(save_ctx);
|
|
return false;
|
|
}
|
|
|
|
if (is_personalized) {
|
|
se_rsa_key_set(0, rsa_keypair->modulus, sizeof(rsa_keypair->modulus), rsa_keypair->private_exponent, sizeof(rsa_keypair->private_exponent));
|
|
}
|
|
|
|
const u32 ticket_sig_type_rsa2048_sha256 = 0x10004;
|
|
|
|
offset = 0;
|
|
terminator_reached = false;
|
|
u32 pct = 0, last_pct = 0, i = 0;
|
|
while (offset < ticket_file.size && !terminator_reached) {
|
|
if (!save_data_file_read(&ticket_file, &br, offset, titlekey_buffer->read_buffer, buf_size) || titlekey_buffer->read_buffer[0] == 0 || br != buf_size)
|
|
break;
|
|
offset += br;
|
|
ticket_t *curr_ticket = (ticket_t *)titlekey_buffer->read_buffer;
|
|
for (u32 j = 0; j < buf_size; j += sizeof(ticket_t), curr_ticket++) {
|
|
minerva_periodic_training();
|
|
pct = (_titlekey_count - start_titlekey_count) * 100 / file_tkey_count;
|
|
if (pct > last_pct && pct <= 100) {
|
|
last_pct = pct;
|
|
tui_pbar(save_x, save_y, pct, COLOR_GREEN, 0xFF155500);
|
|
}
|
|
if (i == file_tkey_count || curr_ticket->signature_type == 0) {
|
|
terminator_reached = true;
|
|
break;
|
|
}
|
|
if (curr_ticket->signature_type != ticket_sig_type_rsa2048_sha256) {
|
|
i++;
|
|
continue;
|
|
}
|
|
if (is_personalized) {
|
|
se_rsa_exp_mod(0, curr_ticket->titlekey_block, sizeof(curr_ticket->titlekey_block), curr_ticket->titlekey_block, sizeof(curr_ticket->titlekey_block));
|
|
if (se_rsa_oaep_decode(
|
|
curr_ticket->titlekey_block, sizeof(titlekey_buffer->titlekeys[0]),
|
|
null_hash, sizeof(null_hash),
|
|
curr_ticket->titlekey_block, sizeof(curr_ticket->titlekey_block)
|
|
) != sizeof(titlekey_buffer->titlekeys[0])
|
|
)
|
|
continue;
|
|
}
|
|
memcpy(titlekey_buffer->rights_ids[_titlekey_count], curr_ticket->rights_id, sizeof(titlekey_buffer->rights_ids[0]));
|
|
memcpy(titlekey_buffer->titlekeys[_titlekey_count], curr_ticket->titlekey_block, sizeof(titlekey_buffer->titlekeys[0]));
|
|
_titlekey_count++;
|
|
i++;
|
|
}
|
|
}
|
|
tui_pbar(save_x, save_y, 100, COLOR_GREEN, 0xFF155500);
|
|
f_close(&fp);
|
|
save_free_contexts(save_ctx);
|
|
free(save_ctx);
|
|
|
|
gfx_con_setpos(0, save_y);
|
|
|
|
if (is_personalized) {
|
|
TPRINTFARGS("\n%kPersonalized... ", colors[(color_idx++) % 6]);
|
|
} else {
|
|
TPRINTFARGS("\n%kCommon... ", colors[(color_idx++) % 6]);
|
|
}
|
|
|
|
gfx_printf("\n\n\n");
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool _derive_sd_seed(key_derivation_ctx_t *keys) {
|
|
FIL fp;
|
|
u32 read_bytes = 0;
|
|
char *private_path = malloc(200);
|
|
strcpy(private_path, "sd:/");
|
|
|
|
if (emu_cfg.nintendo_path && (emu_cfg.enabled || !h_cfg.emummc_force_disable)) {
|
|
strcat(private_path, emu_cfg.nintendo_path);
|
|
} else {
|
|
strcat(private_path, "Nintendo");
|
|
}
|
|
strcat(private_path, "/Contents/private");
|
|
FRESULT fr = f_open(&fp, private_path, FA_READ | FA_OPEN_EXISTING);
|
|
free(private_path);
|
|
if (fr) {
|
|
EPRINTF("Unable to open SD seed vector. Skipping.");
|
|
return false;
|
|
}
|
|
// Get sd seed verification vector
|
|
if (f_read(&fp, keys->temp_key, AES_128_KEY_SIZE, &read_bytes) || read_bytes != AES_128_KEY_SIZE) {
|
|
EPRINTF("Unable to read SD seed vector. Skipping.");
|
|
f_close(&fp);
|
|
return false;
|
|
}
|
|
f_close(&fp);
|
|
|
|
// This file is small enough that parsing the savedata properly is slower
|
|
if (f_open(&fp, "bis:/save/8000000000000043", FA_READ | FA_OPEN_EXISTING)) {
|
|
EPRINTF("Unable to open ns_appman save.\nSkipping SD seed.");
|
|
return false;
|
|
}
|
|
|
|
u8 read_buf[0x20] __attribute__((aligned(4))) = {0};
|
|
for (u32 i = SZ_32K; i < f_size(&fp); i += SZ_16K) {
|
|
if (f_lseek(&fp, i) || f_read(&fp, read_buf, 0x20, &read_bytes) || read_bytes != 0x20)
|
|
break;
|
|
if (!memcmp(keys->temp_key, read_buf, sizeof(keys->temp_key))) {
|
|
memcpy(keys->sd_seed, read_buf + 0x10, sizeof(keys->sd_seed));
|
|
break;
|
|
}
|
|
}
|
|
f_close(&fp);
|
|
|
|
TPRINTFARGS("%kSD Seed... ", colors[(color_idx++) % 6]);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool _read_cal0(void *read_buffer) {
|
|
if (!emummc_storage_read(NX_EMMC_CALIBRATION_OFFSET / NX_EMMC_BLOCKSIZE, NX_EMMC_CALIBRATION_SIZE / NX_EMMC_BLOCKSIZE, read_buffer)) {
|
|
EPRINTF("Unable to read PRODINFO.");
|
|
return false;
|
|
}
|
|
|
|
se_aes_xts_crypt(1, 0, DECRYPT, 0, read_buffer, read_buffer, XTS_CLUSTER_SIZE, NX_EMMC_CALIBRATION_SIZE / XTS_CLUSTER_SIZE);
|
|
|
|
nx_emmc_cal0_t *cal0 = (nx_emmc_cal0_t *)read_buffer;
|
|
if (cal0->magic != MAGIC_CAL0) {
|
|
EPRINTF("Invalid CAL0 magic. Check BIS key 0.");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool _get_rsa_ssl_key(const nx_emmc_cal0_t *cal0, const void **out_key, u32 *out_key_size, const void **out_iv, u32 *out_generation) {
|
|
const u32 ext_key_size = sizeof(cal0->ext_ssl_key_iv) + sizeof(cal0->ext_ssl_key);
|
|
const u32 ext_key_crc_size = ext_key_size + sizeof(cal0->ext_ssl_key_ver) + sizeof(cal0->crc16_pad39);
|
|
const u32 key_size = sizeof(cal0->ssl_key_iv) + sizeof(cal0->ssl_key);
|
|
const u32 key_crc_size = key_size + sizeof(cal0->crc16_pad18);
|
|
|
|
if (cal0->ext_ssl_key_crc == crc16_calc(cal0->ext_ssl_key_iv, ext_key_crc_size)) {
|
|
*out_key = cal0->ext_ssl_key;
|
|
*out_key_size = ext_key_size;
|
|
*out_iv = cal0->ext_ssl_key_iv;
|
|
// Settings sysmodule manually zeroes this out below cal version 9
|
|
*out_generation = cal0->version <= 8 ? 0 : cal0->ext_ssl_key_ver;
|
|
} else if (cal0->ssl_key_crc == crc16_calc(cal0->ssl_key_iv, key_crc_size)) {
|
|
*out_key = cal0->ssl_key;
|
|
*out_key_size = key_size;
|
|
*out_iv = cal0->ssl_key_iv;
|
|
*out_generation = 0;
|
|
} else {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool _derive_personalized_ssl_key(key_derivation_ctx_t *keys, titlekey_buffer_t *titlekey_buffer) {
|
|
if (!_read_cal0(titlekey_buffer->read_buffer)) {
|
|
return false;
|
|
}
|
|
|
|
nx_emmc_cal0_t *cal0 = (nx_emmc_cal0_t *)titlekey_buffer->read_buffer;
|
|
u32 generation = 0;
|
|
const void *ssl_device_key = NULL;
|
|
const void *ssl_iv = NULL;
|
|
u32 key_size = 0;
|
|
void *keypair_ctr_key = NULL;
|
|
bool enforce_unique = true;
|
|
|
|
if (!_get_rsa_ssl_key(cal0, &ssl_device_key, &key_size, &ssl_iv, &generation)) {
|
|
EPRINTF("Crc16 error reading device key.");
|
|
return false;
|
|
}
|
|
|
|
if (key_size == SSL_RSA_KEY_SIZE) {
|
|
bool all_zero = true;
|
|
const u8 *key8 = (const u8 *)ssl_device_key;
|
|
for (u32 i = RSA_2048_KEY_SIZE; i < SSL_RSA_KEY_SIZE; i++) {
|
|
if (key8[i] != 0) {
|
|
all_zero = false;
|
|
break;
|
|
}
|
|
}
|
|
if (all_zero) {
|
|
// Keypairs of this form are not encrypted
|
|
memcpy(keys->ssl_rsa_key, ssl_device_key, RSA_2048_KEY_SIZE);
|
|
return true;
|
|
}
|
|
|
|
u32 option = SET_SEAL_KEY_INDEX(SEAL_KEY_DECRYPT_DEVICE_UNIQUE_DATA);
|
|
keypair_ctr_key = keys->ssl_rsa_kek_legacy;
|
|
_derive_ssl_rsa_kek(KS_AES_ECB, keys, keypair_ctr_key, ssl_rsa_kekek_source, ssl_rsa_kek_source_legacy, generation, option);
|
|
enforce_unique = false;
|
|
}
|
|
|
|
if (generation) {
|
|
u32 option = SET_SEAL_KEY_INDEX(SEAL_KEY_IMPORT_SSL_KEY) | IS_DEVICE_UNIQUE;
|
|
keypair_ctr_key = keys->ssl_rsa_kek_personalized;
|
|
_derive_ssl_rsa_kek(KS_AES_ECB, keys, keypair_ctr_key, ssl_client_cert_kek_source, ssl_client_cert_key_source, generation, option);
|
|
} else {
|
|
keypair_ctr_key = keys->ssl_rsa_kek;
|
|
}
|
|
|
|
u32 ctr_size = enforce_unique ? key_size - 0x20 : key_size - 0x10;
|
|
se_aes_key_set(KS_AES_CTR, keypair_ctr_key, AES_128_KEY_SIZE);
|
|
se_aes_crypt_ctr(KS_AES_CTR, keys->ssl_rsa_key, ctr_size, ssl_device_key, ctr_size, ssl_iv);
|
|
|
|
if (enforce_unique) {
|
|
u32 j_block[AES_128_KEY_SIZE / 4] = {0};
|
|
se_aes_key_set(KS_AES_ECB, keypair_ctr_key, AES_128_KEY_SIZE);
|
|
_ghash(KS_AES_ECB, j_block, ssl_iv, 0x10, NULL, false);
|
|
|
|
u32 calc_mac[AES_128_KEY_SIZE / 4] = {0};
|
|
_ghash(KS_AES_ECB, calc_mac, keys->ssl_rsa_key, ctr_size, j_block, true);
|
|
|
|
const u8 *key8 = (const u8 *)ssl_device_key;
|
|
if (memcmp(calc_mac, &key8[ctr_size], 0x10) != 0) {
|
|
EPRINTF("SSL keypair has invalid GMac.");
|
|
memset(keys->ssl_rsa_key, 0, sizeof(keys->ssl_rsa_key));
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool _get_rsa_eticket_key(const nx_emmc_cal0_t *cal0, const void **out_key, const void **out_iv, u32 *out_generation) {
|
|
const u32 ext_key_size = sizeof(cal0->ext_ecc_rsa2048_eticket_key_iv) + sizeof(cal0->ext_ecc_rsa2048_eticket_key);
|
|
const u32 ext_key_crc_size = ext_key_size + sizeof(cal0->ext_ecc_rsa2048_eticket_key_ver) + sizeof(cal0->crc16_pad38);
|
|
const u32 key_size = sizeof(cal0->rsa2048_eticket_key_iv) + sizeof(cal0->rsa2048_eticket_key);
|
|
const u32 key_crc_size = key_size + sizeof(cal0->crc16_pad21);
|
|
|
|
if (cal0->ext_ecc_rsa2048_eticket_key_crc == crc16_calc(cal0->ext_ecc_rsa2048_eticket_key_iv, ext_key_crc_size)) {
|
|
*out_key = cal0->ext_ecc_rsa2048_eticket_key;
|
|
*out_iv = cal0->ext_ecc_rsa2048_eticket_key_iv;
|
|
// Settings sysmodule manually zeroes this out below cal version 9
|
|
*out_generation = cal0->version <= 8 ? 0 : cal0->ext_ecc_rsa2048_eticket_key_ver;
|
|
} else if (cal0->rsa2048_eticket_key_crc == crc16_calc(cal0->rsa2048_eticket_key_iv, key_crc_size)) {
|
|
*out_key = cal0->rsa2048_eticket_key;
|
|
*out_iv = cal0->rsa2048_eticket_key_iv;
|
|
*out_generation = 0;
|
|
} else {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool _derive_titlekeys(key_derivation_ctx_t *keys, titlekey_buffer_t *titlekey_buffer, bool is_dev) {
|
|
if (!_key_exists(keys->eticket_rsa_kek)) {
|
|
return false;
|
|
}
|
|
|
|
gfx_printf("%kTitlekeys... \n", colors[(color_idx++) % 6]);
|
|
|
|
if (!_read_cal0(titlekey_buffer->read_buffer)) {
|
|
return false;
|
|
}
|
|
|
|
nx_emmc_cal0_t *cal0 = (nx_emmc_cal0_t *)titlekey_buffer->read_buffer;
|
|
u32 generation = 0;
|
|
const void *eticket_device_key = NULL;
|
|
const void *eticket_iv = NULL;
|
|
void *keypair_ctr_key = NULL;
|
|
|
|
if (!_get_rsa_eticket_key(cal0, &eticket_device_key, &eticket_iv, &generation)) {
|
|
EPRINTF("Crc16 error reading device key.");
|
|
return false;
|
|
}
|
|
|
|
if (generation) {
|
|
u32 option = SET_SEAL_KEY_INDEX(SEAL_KEY_IMPORT_ES_DEVICE_KEY) | IS_DEVICE_UNIQUE;
|
|
_derive_eticket_rsa_kek(KS_AES_ECB, keys, keys->eticket_rsa_kek_personalized, is_dev ? eticket_rsa_kek_source_dev : eticket_rsa_kek_source, generation, option);
|
|
keypair_ctr_key = keys->eticket_rsa_kek_personalized;
|
|
} else {
|
|
keypair_ctr_key = keys->eticket_rsa_kek;
|
|
}
|
|
|
|
se_aes_key_set(KS_AES_CTR, keypair_ctr_key, AES_128_KEY_SIZE);
|
|
se_aes_crypt_ctr(KS_AES_CTR, &keys->eticket_rsa_keypair, sizeof(keys->eticket_rsa_keypair), eticket_device_key, sizeof(keys->eticket_rsa_keypair), eticket_iv);
|
|
|
|
if (_read_be_u32(keys->eticket_rsa_keypair.public_exponent, 0) != RSA_PUBLIC_EXPONENT) {
|
|
// Try legacy kek source
|
|
u32 option = SET_SEAL_KEY_INDEX(SEAL_KEY_IMPORT_ES_DEVICE_KEY);
|
|
keypair_ctr_key = keys->temp_key;
|
|
_derive_eticket_rsa_kek(KS_AES_ECB, keys, keypair_ctr_key, eticket_rsa_kek_source_legacy, 0, option);
|
|
|
|
se_aes_key_set(KS_AES_CTR, keypair_ctr_key, AES_128_KEY_SIZE);
|
|
se_aes_crypt_ctr(KS_AES_CTR, &keys->eticket_rsa_keypair, sizeof(keys->eticket_rsa_keypair), eticket_device_key, sizeof(keys->eticket_rsa_keypair), eticket_iv);
|
|
|
|
if (_read_be_u32(keys->eticket_rsa_keypair.public_exponent, 0) != RSA_PUBLIC_EXPONENT) {
|
|
EPRINTF("Invalid public exponent.");
|
|
memset(&keys->eticket_rsa_keypair, 0, sizeof(keys->eticket_rsa_keypair));
|
|
return false;
|
|
} else {
|
|
memcpy(keys->eticket_rsa_kek, keys->temp_key, sizeof(keys->eticket_rsa_kek));
|
|
}
|
|
}
|
|
|
|
if (!_test_rsa_keypair(keys->eticket_rsa_keypair.public_exponent, keys->eticket_rsa_keypair.private_exponent, keys->eticket_rsa_keypair.modulus)) {
|
|
EPRINTF("Invalid keypair. Check eticket_rsa_kek.");
|
|
memset(&keys->eticket_rsa_keypair, 0, sizeof(keys->eticket_rsa_keypair));
|
|
return false;
|
|
}
|
|
|
|
const u32 buf_size = SZ_16K;
|
|
_get_titlekeys_from_save(buf_size, keys->save_mac_key, titlekey_buffer, NULL);
|
|
_get_titlekeys_from_save(buf_size, keys->save_mac_key, titlekey_buffer, &keys->eticket_rsa_keypair);
|
|
|
|
gfx_printf("\n%k Found %d titlekeys.\n\n", colors[(color_idx++) % 6], _titlekey_count);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool _derive_emmc_keys(key_derivation_ctx_t *keys, titlekey_buffer_t *titlekey_buffer, bool is_dev) {
|
|
// Set BIS keys.
|
|
// PRODINFO/PRODINFOF
|
|
se_aes_key_set(KS_BIS_00_0, keys->bis_key[0] + 0x00, AES_128_KEY_SIZE);
|
|
se_aes_key_set(KS_BIS_00_1, keys->bis_key[0] + 0x10, AES_128_KEY_SIZE);
|
|
// SAFE
|
|
se_aes_key_set(KS_BIS_01_0, keys->bis_key[1] + 0x00, AES_128_KEY_SIZE);
|
|
se_aes_key_set(KS_BIS_01_1, keys->bis_key[1] + 0x10, AES_128_KEY_SIZE);
|
|
// SYSTEM/USER
|
|
se_aes_key_set(KS_BIS_02_0, keys->bis_key[2] + 0x00, AES_128_KEY_SIZE);
|
|
se_aes_key_set(KS_BIS_02_1, keys->bis_key[2] + 0x10, AES_128_KEY_SIZE);
|
|
|
|
if (!emummc_storage_set_mmc_partition(EMMC_GPP)) {
|
|
EPRINTF("Unable to set partition.");
|
|
return false;
|
|
}
|
|
// Parse eMMC GPT
|
|
LIST_INIT(gpt);
|
|
nx_emmc_gpt_parse(&gpt, &emmc_storage);
|
|
|
|
emmc_part_t *system_part = nx_emmc_part_find(&gpt, "SYSTEM");
|
|
if (!system_part) {
|
|
EPRINTF("Unable to locate System partition.");
|
|
nx_emmc_gpt_free(&gpt);
|
|
return false;
|
|
}
|
|
|
|
nx_emmc_bis_init(system_part);
|
|
|
|
if (f_mount(&emmc_fs, "bis:", 1)) {
|
|
EPRINTF("Unable to mount system partition.");
|
|
nx_emmc_gpt_free(&gpt);
|
|
return false;
|
|
}
|
|
|
|
if (!sd_mount()) {
|
|
EPRINTF("Unable to mount SD.");
|
|
} else if (!_derive_sd_seed(keys)) {
|
|
EPRINTF("Unable to get SD seed.");
|
|
}
|
|
|
|
bool res = _derive_titlekeys(keys, titlekey_buffer, is_dev);
|
|
if (!res) {
|
|
EPRINTF("Unable to derive titlekeys.");
|
|
}
|
|
|
|
_derive_personalized_ssl_key(keys, titlekey_buffer);
|
|
|
|
f_mount(NULL, "bis:", 1);
|
|
nx_emmc_gpt_free(&gpt);
|
|
|
|
return res;
|
|
}
|
|
|
|
// The security engine supports partial key override for locked keyslots
|
|
// This allows for a manageable brute force on a PC
|
|
// Then the Mariko AES class keys, KEK, BEK, unique SBK and SSK can be recovered
|
|
int save_mariko_partial_keys(u32 start, u32 count, bool append) {
|
|
const char *keyfile_path = "sd:/switch/partialaes.keys";
|
|
if (!f_stat(keyfile_path, NULL)) {
|
|
f_unlink(keyfile_path);
|
|
}
|
|
|
|
if (start + count > SE_AES_KEYSLOT_COUNT) {
|
|
return 1;
|
|
}
|
|
|
|
display_backlight_brightness(h_cfg.backlight, 1000);
|
|
gfx_clear_partial_grey(0x1B, 32, 1224);
|
|
gfx_con_setpos(0, 32);
|
|
|
|
color_idx = 0;
|
|
|
|
u32 pos = 0;
|
|
u32 zeros[AES_128_KEY_SIZE / 4] = {0};
|
|
u8 *data = malloc(4 * AES_128_KEY_SIZE);
|
|
char *text_buffer = calloc(1, 0x100 * count);
|
|
|
|
for (u32 ks = start; ks < start + count; ks++) {
|
|
// Check if key is as expected
|
|
if (ks < ARRAY_SIZE(mariko_key_vectors)) {
|
|
se_aes_crypt_block_ecb(ks, DECRYPT, &data[0], mariko_key_vectors[ks]);
|
|
if (_key_exists(data)) {
|
|
EPRINTFARGS("Failed to validate keyslot %d.", ks);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Encrypt zeros with complete key
|
|
se_aes_crypt_block_ecb(ks, ENCRYPT, &data[3 * AES_128_KEY_SIZE], zeros);
|
|
|
|
// We only need to overwrite 3 of the dwords of the key
|
|
for (u32 i = 0; i < 3; i++) {
|
|
// Overwrite ith dword of key with zeros
|
|
se_aes_key_partial_set(ks, i, 0);
|
|
// Encrypt zeros with more of the key zeroed out
|
|
se_aes_crypt_block_ecb(ks, ENCRYPT, &data[(2 - i) * AES_128_KEY_SIZE], zeros);
|
|
}
|
|
|
|
// Skip saving key if two results are the same indicating unsuccessful overwrite or empty slot
|
|
if (memcmp(&data[0], &data[SE_KEY_128_SIZE], AES_128_KEY_SIZE) == 0) {
|
|
EPRINTFARGS("Failed to overwrite keyslot %d.", ks);
|
|
continue;
|
|
}
|
|
|
|
pos += s_printf(&text_buffer[pos], "%d\n", ks);
|
|
for (u32 i = 0; i < 4; i++) {
|
|
for (u32 j = 0; j < AES_128_KEY_SIZE; j++)
|
|
pos += s_printf(&text_buffer[pos], "%02x", data[i * AES_128_KEY_SIZE + j]);
|
|
pos += s_printf(&text_buffer[pos], " ");
|
|
}
|
|
pos += s_printf(&text_buffer[pos], "\n");
|
|
}
|
|
free(data);
|
|
|
|
if (strlen(text_buffer) == 0) {
|
|
EPRINTFARGS("Failed to dump partial keys %d-%d.", start, start + count - 1);
|
|
free(text_buffer);
|
|
return 2;
|
|
}
|
|
|
|
FIL fp;
|
|
BYTE mode = FA_WRITE;
|
|
|
|
if (append) {
|
|
mode |= FA_OPEN_APPEND;
|
|
} else {
|
|
mode |= FA_CREATE_ALWAYS;
|
|
}
|
|
|
|
if (!sd_mount()) {
|
|
EPRINTF("Unable to mount SD.");
|
|
free(text_buffer);
|
|
return 3;
|
|
}
|
|
|
|
if (f_open(&fp, keyfile_path, mode)) {
|
|
EPRINTF("Unable to write partial keys to SD.");
|
|
free(text_buffer);
|
|
return 3;
|
|
}
|
|
|
|
f_write(&fp, text_buffer, strlen(text_buffer), NULL);
|
|
f_close(&fp);
|
|
|
|
gfx_printf("%kWrote partials to %s\n", colors[(color_idx++) % 6], keyfile_path);
|
|
|
|
free(text_buffer);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void _save_keys_to_sd(key_derivation_ctx_t *keys, titlekey_buffer_t *titlekey_buffer, bool is_dev) {
|
|
char *text_buffer = NULL;
|
|
if (!sd_mount()) {
|
|
EPRINTF("Unable to mount SD.");
|
|
return;
|
|
}
|
|
|
|
u32 text_buffer_size = MAX(_titlekey_count * sizeof(titlekey_text_buffer_t) + 1, SZ_16K);
|
|
text_buffer = (char *)calloc(1, text_buffer_size);
|
|
|
|
SAVE_KEY(aes_kek_generation_source);
|
|
SAVE_KEY(aes_key_generation_source);
|
|
SAVE_KEY(bis_kek_source);
|
|
SAVE_KEY_FAMILY_VAR(bis_key, keys->bis_key, 0);
|
|
SAVE_KEY_FAMILY_VAR(bis_key_source, bis_key_sources, 0);
|
|
SAVE_KEY_VAR(device_key, keys->device_key);
|
|
SAVE_KEY_VAR(device_key_4x, keys->device_key_4x);
|
|
SAVE_KEY_VAR(eticket_rsa_kek, keys->eticket_rsa_kek);
|
|
SAVE_KEY_VAR(eticket_rsa_kek_personalized, keys->eticket_rsa_kek_personalized);
|
|
if (is_dev) {
|
|
SAVE_KEY_VAR(eticket_rsa_kek_source, eticket_rsa_kek_source_dev);
|
|
} else {
|
|
SAVE_KEY(eticket_rsa_kek_source);
|
|
}
|
|
SAVE_KEY(eticket_rsa_kekek_source);
|
|
_save_key("eticket_rsa_keypair", &keys->eticket_rsa_keypair, sizeof(keys->eticket_rsa_keypair), text_buffer);
|
|
SAVE_KEY(header_kek_source);
|
|
SAVE_KEY_VAR(header_key, keys->header_key);
|
|
SAVE_KEY(header_key_source);
|
|
SAVE_KEY_FAMILY_VAR(key_area_key_application, keys->key_area_key[0], 0);
|
|
SAVE_KEY_VAR(key_area_key_application_source, key_area_key_sources[0]);
|
|
SAVE_KEY_FAMILY_VAR(key_area_key_ocean, keys->key_area_key[1], 0);
|
|
SAVE_KEY_VAR(key_area_key_ocean_source, key_area_key_sources[1]);
|
|
SAVE_KEY_FAMILY_VAR(key_area_key_system, keys->key_area_key[2], 0);
|
|
SAVE_KEY_VAR(key_area_key_system_source, key_area_key_sources[2]);
|
|
SAVE_KEY_FAMILY_VAR(keyblob, keys->keyblob, 0);
|
|
SAVE_KEY_FAMILY_VAR(keyblob_key, keys->keyblob_key, 0);
|
|
SAVE_KEY_FAMILY_VAR(keyblob_key_source, keyblob_key_sources, 0);
|
|
SAVE_KEY_FAMILY_VAR(keyblob_mac_key, keys->keyblob_mac_key, 0);
|
|
SAVE_KEY(keyblob_mac_key_source);
|
|
if (is_dev) {
|
|
SAVE_KEY_FAMILY_VAR(mariko_master_kek_source, mariko_master_kek_sources_dev, 5);
|
|
} else {
|
|
SAVE_KEY_FAMILY_VAR(mariko_master_kek_source, mariko_master_kek_sources, 5);
|
|
}
|
|
SAVE_KEY_FAMILY_VAR(master_kek, keys->master_kek, 0);
|
|
SAVE_KEY_FAMILY_VAR(master_kek_source, master_kek_sources, KB_FIRMWARE_VERSION_620);
|
|
SAVE_KEY_FAMILY_VAR(master_key, keys->master_key, 0);
|
|
SAVE_KEY(master_key_source);
|
|
SAVE_KEY_FAMILY_VAR(package1_key, keys->package1_key, 0);
|
|
SAVE_KEY_FAMILY_VAR(package2_key, keys->package2_key, 0);
|
|
SAVE_KEY(package2_key_source);
|
|
SAVE_KEY(per_console_key_source);
|
|
SAVE_KEY(retail_specific_aes_key_source);
|
|
SAVE_KEY(save_mac_kek_source);
|
|
SAVE_KEY_VAR(save_mac_key, keys->save_mac_key);
|
|
SAVE_KEY(save_mac_key_source);
|
|
SAVE_KEY(save_mac_sd_card_kek_source);
|
|
SAVE_KEY(save_mac_sd_card_key_source);
|
|
SAVE_KEY(sd_card_custom_storage_key_source);
|
|
SAVE_KEY(sd_card_kek_source);
|
|
SAVE_KEY(sd_card_nca_key_source);
|
|
SAVE_KEY(sd_card_save_key_source);
|
|
SAVE_KEY_VAR(sd_seed, keys->sd_seed);
|
|
SAVE_KEY_VAR(secure_boot_key, keys->sbk);
|
|
SAVE_KEY_VAR(ssl_rsa_kek, keys->ssl_rsa_kek);
|
|
SAVE_KEY_VAR(ssl_rsa_kek_personalized, keys->ssl_rsa_kek_personalized);
|
|
if (is_dev) {
|
|
SAVE_KEY_VAR(ssl_rsa_kek_source, ssl_rsa_kek_source_dev);
|
|
} else {
|
|
SAVE_KEY(ssl_rsa_kek_source);
|
|
}
|
|
SAVE_KEY(ssl_rsa_kekek_source);
|
|
_save_key("ssl_rsa_key", keys->ssl_rsa_key, RSA_2048_KEY_SIZE, text_buffer);
|
|
SAVE_KEY_FAMILY_VAR(titlekek, keys->titlekek, 0);
|
|
SAVE_KEY(titlekek_source);
|
|
SAVE_KEY_VAR(tsec_key, keys->tsec_key);
|
|
|
|
const u32 root_key_ver = 2;
|
|
char root_key_name[21] = "tsec_root_key_00";
|
|
s_printf(root_key_name + 14, "%02x", root_key_ver);
|
|
_save_key(root_key_name, keys->tsec_root_key, AES_128_KEY_SIZE, text_buffer);
|
|
|
|
gfx_printf("\n%k Found %d %s keys.\n\n", colors[(color_idx++) % 6], _key_count, is_dev ? "dev" : "prod");
|
|
gfx_printf("%kFound through master_key_%02x.\n\n", colors[(color_idx++) % 6], KB_FIRMWARE_VERSION_MAX);
|
|
|
|
f_mkdir("sd:/switch");
|
|
|
|
const char *keyfile_path = is_dev ? "sd:/switch/dev.keys" : "sd:/switch/prod.keys";
|
|
|
|
FILINFO fno;
|
|
if (!sd_save_to_file(text_buffer, strlen(text_buffer), keyfile_path) && !f_stat(keyfile_path, &fno)) {
|
|
gfx_printf("%kWrote %d bytes to %s\n", colors[(color_idx++) % 6], (u32)fno.fsize, keyfile_path);
|
|
} else {
|
|
EPRINTF("Unable to save keys to SD.");
|
|
}
|
|
|
|
if (_titlekey_count == 0 || !titlekey_buffer) {
|
|
free(text_buffer);
|
|
return;
|
|
}
|
|
memset(text_buffer, 0, text_buffer_size);
|
|
|
|
titlekey_text_buffer_t *titlekey_text = (titlekey_text_buffer_t *)text_buffer;
|
|
|
|
for (u32 i = 0; i < _titlekey_count; i++) {
|
|
for (u32 j = 0; j < AES_128_KEY_SIZE; j++)
|
|
s_printf(&titlekey_text[i].rights_id[j * 2], "%02x", titlekey_buffer->rights_ids[i][j]);
|
|
s_printf(titlekey_text[i].equals, " = ");
|
|
for (u32 j = 0; j < AES_128_KEY_SIZE; j++)
|
|
s_printf(&titlekey_text[i].titlekey[j * 2], "%02x", titlekey_buffer->titlekeys[i][j]);
|
|
s_printf(titlekey_text[i].newline, "\n");
|
|
}
|
|
|
|
keyfile_path = "sd:/switch/title.keys";
|
|
if (!sd_save_to_file(text_buffer, strlen(text_buffer), keyfile_path) && !f_stat(keyfile_path, &fno)) {
|
|
gfx_printf("%kWrote %d bytes to %s\n", colors[(color_idx++) % 6], (u32)fno.fsize, keyfile_path);
|
|
} else {
|
|
EPRINTF("Unable to save titlekeys to SD.");
|
|
}
|
|
|
|
free(text_buffer);
|
|
}
|
|
|
|
static bool _check_keyslot_access() {
|
|
u8 test_data[AES_128_KEY_SIZE] = {0};
|
|
const u8 test_ciphertext[AES_128_KEY_SIZE] = {0};
|
|
se_aes_key_set(KS_AES_ECB, "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f", SE_KEY_128_SIZE);
|
|
se_aes_crypt_block_ecb(KS_AES_ECB, DECRYPT, test_data, test_ciphertext);
|
|
|
|
return memcmp(test_data, "\x7b\x1d\x29\xa1\x6c\xf8\xcc\xab\x84\xf0\xb8\xa5\x98\xe4\x2f\xa6", SE_KEY_128_SIZE) == 0;
|
|
}
|
|
|
|
static void _derive_master_keys(key_derivation_ctx_t *prod_keys, key_derivation_ctx_t *dev_keys, bool is_dev) {
|
|
key_derivation_ctx_t *keys = is_dev ? dev_keys : prod_keys;
|
|
|
|
if (h_cfg.t210b01) {
|
|
_derive_master_key_mariko(keys, is_dev);
|
|
minerva_periodic_training();
|
|
_derive_master_keys_from_latest_key(keys, is_dev);
|
|
} else {
|
|
int res = _run_ams_keygen(keys);
|
|
if (res) {
|
|
return;
|
|
}
|
|
|
|
u8 *aes_keys = (u8 *)calloc(SZ_4K, 1);
|
|
se_get_aes_keys(aes_keys + SZ_2K, aes_keys, AES_128_KEY_SIZE);
|
|
memcpy(&dev_keys->tsec_root_key, aes_keys + KS_TSEC_ROOT_DEV * AES_128_KEY_SIZE, AES_128_KEY_SIZE);
|
|
memcpy(keys->tsec_key, aes_keys + KS_TSEC * AES_128_KEY_SIZE, AES_128_KEY_SIZE);
|
|
memcpy(&prod_keys->tsec_root_key, aes_keys + KS_TSEC_ROOT * AES_128_KEY_SIZE, AES_128_KEY_SIZE);
|
|
free(aes_keys);
|
|
|
|
_derive_master_keys_from_latest_key(prod_keys, false);
|
|
minerva_periodic_training();
|
|
_derive_master_keys_from_latest_key(dev_keys, true);
|
|
minerva_periodic_training();
|
|
_derive_keyblob_keys(keys);
|
|
}
|
|
}
|
|
|
|
static void _derive_keys() {
|
|
minerva_periodic_training();
|
|
|
|
if (!_check_keyslot_access()) {
|
|
EPRINTF("Unable to set crypto keyslots!\nTry launching payload differently\n or flash Spacecraft-NX if using a modchip.");
|
|
return;
|
|
}
|
|
|
|
u32 start_whole_operation_time = get_tmr_us();
|
|
|
|
if (emummc_storage_init_mmc()) {
|
|
EPRINTF("Unable to init MMC.");
|
|
} else {
|
|
TPRINTFARGS("%kMMC init... ", colors[(color_idx++) % 6]);
|
|
}
|
|
|
|
minerva_periodic_training();
|
|
|
|
if (emmc_storage.initialized && !emummc_storage_set_mmc_partition(EMMC_BOOT0)) {
|
|
EPRINTF("Unable to set partition.");
|
|
emummc_storage_end();
|
|
}
|
|
|
|
bool is_dev = fuse_read_hw_state() == FUSE_NX_HW_STATE_DEV;
|
|
|
|
key_derivation_ctx_t __attribute__((aligned(4))) prod_keys = {0}, dev_keys = {0};
|
|
key_derivation_ctx_t *keys = is_dev ? &dev_keys : &prod_keys;
|
|
|
|
_derive_master_keys(&prod_keys, &dev_keys, is_dev);
|
|
|
|
TPRINTFARGS("%kMaster keys... ", colors[(color_idx++) % 6]);
|
|
|
|
_derive_bis_keys(keys);
|
|
|
|
TPRINTFARGS("%kBIS keys... ", colors[(color_idx++) % 6]);
|
|
|
|
minerva_periodic_training();
|
|
_derive_misc_keys(keys, is_dev);
|
|
|
|
minerva_periodic_training();
|
|
_derive_non_unique_keys(&prod_keys, is_dev);
|
|
|
|
minerva_periodic_training();
|
|
_derive_non_unique_keys(&dev_keys, is_dev);
|
|
|
|
minerva_periodic_training();
|
|
_derive_per_generation_keys(&prod_keys);
|
|
|
|
minerva_periodic_training();
|
|
_derive_per_generation_keys(&dev_keys);
|
|
|
|
titlekey_buffer_t *titlekey_buffer = (titlekey_buffer_t *)TITLEKEY_BUF_ADR;
|
|
|
|
// Requires BIS key for SYSTEM partition
|
|
if (!emmc_storage.initialized) {
|
|
EPRINTF("eMMC not initialized.\nSkipping SD seed and titlekeys.");
|
|
} else if (_key_exists(keys->bis_key[2])) {
|
|
_derive_emmc_keys(keys, titlekey_buffer, is_dev);
|
|
} else {
|
|
EPRINTF("Missing needed BIS keys.\nSkipping SD seed and titlekeys.");
|
|
}
|
|
|
|
end_time = get_tmr_us();
|
|
gfx_printf("%kLockpick totally done in %d us\n", colors[(color_idx++) % 6], end_time - start_whole_operation_time);
|
|
|
|
if (h_cfg.t210b01) {
|
|
// On Mariko, save only relevant key set
|
|
_save_keys_to_sd(keys, titlekey_buffer, is_dev);
|
|
} else {
|
|
// On Erista, save both prod and dev key sets
|
|
_save_keys_to_sd(&prod_keys, titlekey_buffer, false);
|
|
_key_count = 0;
|
|
_save_keys_to_sd(&dev_keys, NULL, true);
|
|
}
|
|
}
|
|
|
|
void derive_amiibo_keys() {
|
|
minerva_change_freq(FREQ_1600);
|
|
|
|
bool is_dev = fuse_read_hw_state() == FUSE_NX_HW_STATE_DEV;
|
|
|
|
key_derivation_ctx_t __attribute__((aligned(4))) prod_keys = {0}, dev_keys = {0};
|
|
key_derivation_ctx_t *keys = is_dev ? &dev_keys : &prod_keys;
|
|
const u8 *encrypted_keys = is_dev ? encrypted_nfc_keys_dev : encrypted_nfc_keys;
|
|
|
|
_derive_master_keys(&prod_keys, &dev_keys, is_dev);
|
|
|
|
minerva_periodic_training();
|
|
|
|
display_backlight_brightness(h_cfg.backlight, 1000);
|
|
gfx_clear_partial_grey(0x1B, 32, 1224);
|
|
gfx_con_setpos(0, 32);
|
|
|
|
color_idx = 0;
|
|
|
|
minerva_periodic_training();
|
|
|
|
if (!_key_exists(keys->master_key[0])) {
|
|
EPRINTF("Unable to derive master keys for NFC.");
|
|
minerva_change_freq(FREQ_800);
|
|
btn_wait();
|
|
return;
|
|
}
|
|
|
|
_decrypt_aes_key(KS_AES_ECB, keys, keys->temp_key, nfc_key_source, 0, 0);
|
|
|
|
nfc_keyblob_t __attribute__((aligned(4))) nfc_keyblob;
|
|
static const u8 nfc_iv[AES_128_KEY_SIZE] = {
|
|
0xB9, 0x1D, 0xC1, 0xCF, 0x33, 0x5F, 0xA6, 0x13, 0x2A, 0xEF, 0x90, 0x99, 0xAA, 0xCA, 0x93, 0xC8};
|
|
se_aes_key_set(KS_AES_CTR, keys->temp_key, AES_128_KEY_SIZE);
|
|
se_aes_crypt_ctr(KS_AES_CTR, &nfc_keyblob, sizeof(nfc_keyblob), encrypted_keys, sizeof(nfc_keyblob), &nfc_iv);
|
|
|
|
minerva_periodic_training();
|
|
|
|
u8 xor_pad[0x20] __attribute__((aligned(4))) = {0};
|
|
se_aes_key_set(KS_AES_CTR, nfc_keyblob.ctr_key, AES_128_KEY_SIZE);
|
|
se_aes_crypt_ctr(KS_AES_CTR, xor_pad, sizeof(xor_pad), xor_pad, sizeof(xor_pad), nfc_keyblob.ctr_iv);
|
|
|
|
minerva_periodic_training();
|
|
|
|
nfc_save_key_t __attribute__((aligned(4))) nfc_save_keys[2] = {0};
|
|
memcpy(nfc_save_keys[0].hmac_key, nfc_keyblob.hmac_key, sizeof(nfc_keyblob.hmac_key));
|
|
memcpy(nfc_save_keys[0].phrase, nfc_keyblob.phrase, sizeof(nfc_keyblob.phrase));
|
|
nfc_save_keys[0].seed_size = sizeof(nfc_keyblob.seed);
|
|
memcpy(nfc_save_keys[0].seed, nfc_keyblob.seed, sizeof(nfc_keyblob.seed));
|
|
memcpy(nfc_save_keys[0].xor_pad, xor_pad, sizeof(xor_pad));
|
|
|
|
memcpy(nfc_save_keys[1].hmac_key, nfc_keyblob.hmac_key_for_verif, sizeof(nfc_keyblob.hmac_key_for_verif));
|
|
memcpy(nfc_save_keys[1].phrase, nfc_keyblob.phrase_for_verif, sizeof(nfc_keyblob.phrase_for_verif));
|
|
nfc_save_keys[1].seed_size = sizeof(nfc_keyblob.seed_for_verif);
|
|
memcpy(nfc_save_keys[1].seed, nfc_keyblob.seed_for_verif, sizeof(nfc_keyblob.seed_for_verif));
|
|
memcpy(nfc_save_keys[1].xor_pad, xor_pad, sizeof(xor_pad));
|
|
|
|
minerva_periodic_training();
|
|
|
|
u8 hash[0x20] = {0};
|
|
se_calc_sha256_oneshot(hash, &nfc_save_keys[0], sizeof(nfc_save_keys));
|
|
|
|
if (memcmp(hash, is_dev ? nfc_blob_hash_dev : nfc_blob_hash, sizeof(hash)) != 0) {
|
|
EPRINTF("Amiibo hash mismatch. Skipping save.");
|
|
minerva_change_freq(FREQ_800);
|
|
btn_wait();
|
|
return;
|
|
}
|
|
|
|
const char *keyfile_path = is_dev ? "sd:/switch/key_dev.bin" : "sd:/switch/key_retail.bin";
|
|
|
|
if (!sd_save_to_file(&nfc_save_keys[0], sizeof(nfc_save_keys), keyfile_path)) {
|
|
gfx_printf("%kWrote Amiibo keys to\n %s\n", colors[(color_idx++) % 6], keyfile_path);
|
|
} else {
|
|
EPRINTF("Unable to save Amiibo keys to SD.");
|
|
}
|
|
|
|
gfx_printf("\n%kPress a button to return to the menu.", colors[(color_idx++) % 6]);
|
|
minerva_change_freq(FREQ_800);
|
|
btn_wait();
|
|
gfx_clear_grey(0x1B);
|
|
}
|
|
|
|
void dump_keys() {
|
|
minerva_change_freq(FREQ_1600);
|
|
|
|
display_backlight_brightness(h_cfg.backlight, 1000);
|
|
gfx_clear_grey(0x1B);
|
|
gfx_con_setpos(0, 0);
|
|
|
|
gfx_printf("[%kLo%kck%kpi%kck%k_R%kCM%k v%d.%d.%d%k]\n\n",
|
|
colors[0], colors[1], colors[2], colors[3], colors[4], colors[5], 0xFFFF00FF, LP_VER_MJ, LP_VER_MN, LP_VER_BF, 0xFFCCCCCC);
|
|
|
|
_key_count = 0;
|
|
_titlekey_count = 0;
|
|
color_idx = 0;
|
|
|
|
start_time = get_tmr_us();
|
|
|
|
_derive_keys();
|
|
|
|
emummc_load_cfg();
|
|
// Ignore whether emummc is enabled.
|
|
h_cfg.emummc_force_disable = emu_cfg.sector == 0 && !emu_cfg.path;
|
|
emu_cfg.enabled = !h_cfg.emummc_force_disable;
|
|
if (emmc_storage.initialized) {
|
|
sdmmc_storage_end(&emmc_storage);
|
|
}
|
|
|
|
minerva_change_freq(FREQ_800);
|
|
gfx_printf("\n%kPress VOL+ to save a screenshot\n or another button to return to the menu.\n\n", colors[(color_idx++) % 6]);
|
|
u8 btn = btn_wait();
|
|
if (btn == BTN_VOL_UP) {
|
|
int res = save_fb_to_bmp();
|
|
if (!res) {
|
|
gfx_printf("%kScreenshot sd:/switch/lockpick_rcm.bmp saved.", colors[(color_idx++) % 6]);
|
|
} else {
|
|
EPRINTF("Screenshot failed.");
|
|
}
|
|
gfx_printf("\n%kPress a button to return to the menu.", colors[(color_idx++) % 6]);
|
|
btn_wait();
|
|
}
|
|
gfx_clear_grey(0x1B);
|
|
}
|
|
|
|
static void _save_key(const char *name, const void *data, u32 len, char *outbuf) {
|
|
if (!_key_exists(data))
|
|
return;
|
|
u32 pos = strlen(outbuf);
|
|
pos += s_printf(&outbuf[pos], "%s = ", name);
|
|
for (u32 i = 0; i < len; i++)
|
|
pos += s_printf(&outbuf[pos], "%02x", *(u8*)(data + i));
|
|
s_printf(&outbuf[pos], "\n");
|
|
_key_count++;
|
|
}
|
|
|
|
static void _save_key_family(const char *name, const void *data, u32 start_key, u32 num_keys, u32 len, char *outbuf) {
|
|
char *temp_name = calloc(1, 0x40);
|
|
for (u32 i = 0; i < num_keys; i++) {
|
|
s_printf(temp_name, "%s_%02x", name, i + start_key);
|
|
_save_key(temp_name, data + i * len, len, outbuf);
|
|
}
|
|
free(temp_name);
|
|
}
|
|
|
|
// Equivalent to spl::GenerateAesKek
|
|
static void _generate_aes_kek(u32 ks, key_derivation_ctx_t *keys, void *out_kek, const void *kek_source, u32 generation, u32 option) {
|
|
bool device_unique = GET_IS_DEVICE_UNIQUE(option);
|
|
u32 seal_key_index = GET_SEAL_KEY_INDEX(option);
|
|
|
|
if (generation)
|
|
generation--;
|
|
|
|
u8 static_source[AES_128_KEY_SIZE];
|
|
for (u32 i = 0; i < AES_128_KEY_SIZE; i++)
|
|
static_source[i] = aes_kek_generation_source[i] ^ seal_key_masks[seal_key_index][i];
|
|
|
|
if (device_unique) {
|
|
_get_device_key(ks, keys, keys->temp_key, generation);
|
|
} else {
|
|
memcpy(keys->temp_key, keys->master_key[generation], sizeof(keys->temp_key));
|
|
}
|
|
se_aes_key_set(ks, keys->temp_key, AES_128_KEY_SIZE);
|
|
se_aes_unwrap_key(ks, ks, static_source);
|
|
se_aes_crypt_block_ecb(ks, DECRYPT, out_kek, kek_source);
|
|
}
|
|
|
|
// Based on spl::LoadAesKey but instead of prepping keyslot, returns calculated key
|
|
static void _load_aes_key(u32 ks, void *out_key, const void *access_key, const void *key_source) {
|
|
se_aes_key_set(ks, access_key, AES_128_KEY_SIZE);
|
|
se_aes_crypt_block_ecb(ks, DECRYPT, out_key, key_source);
|
|
}
|
|
|
|
// Equivalent to spl::GenerateAesKey
|
|
static void _generate_aes_key(u32 ks, key_derivation_ctx_t *keys, void *out_key, u32 key_size, const void *access_key, const void *key_source) {
|
|
void *aes_key = keys->temp_key;
|
|
_load_aes_key(ks, aes_key, access_key, aes_key_generation_source);
|
|
se_aes_key_set(ks, aes_key, AES_128_KEY_SIZE);
|
|
se_aes_crypt_ecb(ks, DECRYPT, out_key, key_size, key_source, key_size);
|
|
}
|
|
|
|
// Equivalent to smc::PrepareDeviceUniqueDataKey but with no sealing
|
|
static void _get_device_unique_data_key(u32 ks, void *out_key, const void *access_key, const void *key_source) {
|
|
_load_aes_key(ks, out_key, access_key, key_source);
|
|
}
|
|
|
|
// Equivalent to spl::DecryptAesKey.
|
|
static void _decrypt_aes_key(u32 ks, key_derivation_ctx_t *keys, void *out_key, const void *key_source, u32 generation, u32 option) {
|
|
void *access_key = keys->temp_key;
|
|
_generate_aes_kek(ks, keys, access_key, aes_key_decryption_source, generation, option);
|
|
_generate_aes_key(ks, keys, out_key, AES_128_KEY_SIZE, access_key, key_source);
|
|
}
|
|
|
|
// Equivalent to smc::GetSecureData
|
|
static void _get_secure_data(key_derivation_ctx_t *keys, void *out_data) {
|
|
se_aes_key_set(KS_AES_CTR, keys->device_key, AES_128_KEY_SIZE);
|
|
u8 *d = (u8 *)out_data;
|
|
se_aes_crypt_ctr(KS_AES_CTR, d + AES_128_KEY_SIZE * 0, AES_128_KEY_SIZE, secure_data_source, AES_128_KEY_SIZE, secure_data_counters[0]);
|
|
se_aes_crypt_ctr(KS_AES_CTR, d + AES_128_KEY_SIZE * 1, AES_128_KEY_SIZE, secure_data_source, AES_128_KEY_SIZE, secure_data_counters[0]);
|
|
|
|
// Apply tweak
|
|
for (u32 i = 0; i < AES_128_KEY_SIZE; i++) {
|
|
d[AES_128_KEY_SIZE + i] ^= secure_data_tweaks[0][i];
|
|
}
|
|
}
|
|
|
|
// Equivalent to spl::GenerateSpecificAesKey
|
|
static void _generate_specific_aes_key(u32 ks, key_derivation_ctx_t *keys, void *out_key, const void *key_source, u32 generation) {
|
|
if (fuse_read_bootrom_rev() >= 0x7F) {
|
|
_get_device_key(ks, keys, keys->temp_key, generation - 1);
|
|
se_aes_key_set(ks, keys->temp_key, AES_128_KEY_SIZE);
|
|
se_aes_unwrap_key(ks, ks, retail_specific_aes_key_source);
|
|
se_aes_crypt_ecb(ks, DECRYPT, out_key, AES_128_KEY_SIZE * 2, key_source, AES_128_KEY_SIZE * 2);
|
|
} else {
|
|
_get_secure_data(keys, out_key);
|
|
}
|
|
}
|
|
|
|
static void _get_device_key(u32 ks, key_derivation_ctx_t *keys, void *out_device_key, u32 generation) {
|
|
if (generation == KB_FIRMWARE_VERSION_100 && !h_cfg.t210b01) {
|
|
memcpy(out_device_key, keys->device_key, AES_128_KEY_SIZE);
|
|
return;
|
|
}
|
|
|
|
if (generation >= KB_FIRMWARE_VERSION_400) {
|
|
generation -= KB_FIRMWARE_VERSION_400;
|
|
} else {
|
|
generation = 0;
|
|
}
|
|
u32 temp_key_source[AES_128_KEY_SIZE / 4] = {0};
|
|
_load_aes_key(ks, temp_key_source, keys->device_key_4x, device_master_key_source_sources[generation]);
|
|
const void *kek_source = fuse_read_hw_state() == FUSE_NX_HW_STATE_PROD ? device_master_kek_sources[generation] : device_master_kek_sources_dev[generation];
|
|
se_aes_key_set(ks, keys->master_key[0], AES_128_KEY_SIZE);
|
|
se_aes_unwrap_key(ks, ks, kek_source);
|
|
se_aes_crypt_block_ecb(ks, DECRYPT, out_device_key, temp_key_source);
|
|
}
|
|
|
|
// The following ghash implementation is from Atmosphère's original exosphere implementation
|
|
|
|
/* Shifts right a little endian 128-bit value. */
|
|
static void _shr_128(uint64_t *val) {
|
|
val[0] >>= 1;
|
|
val[0] |= (val[1] & 1) << 63;
|
|
val[1] >>= 1;
|
|
}
|
|
|
|
/* Shifts left a little endian 128-bit value. */
|
|
static void _shl_128(uint64_t *val) {
|
|
val[1] <<= 1;
|
|
val[1] |= (val[0] & (1ull << 63)) >> 63;
|
|
val[0] <<= 1;
|
|
}
|
|
|
|
/* Multiplies two 128-bit numbers X,Y in the GF(128) Galois Field. */
|
|
static void _gf128_mul(uint8_t *dst, const uint8_t *x, const uint8_t *y) {
|
|
uint8_t x_work[0x10];
|
|
uint8_t y_work[0x10];
|
|
uint8_t dst_work[0x10];
|
|
|
|
uint64_t *p_x = (uint64_t *)(&x_work[0]);
|
|
uint64_t *p_y = (uint64_t *)(&y_work[0]);
|
|
uint64_t *p_dst = (uint64_t *)(&dst_work[0]);
|
|
|
|
/* Initialize buffers. */
|
|
for (unsigned int i = 0; i < 0x10; i++) {
|
|
x_work[i] = x[0xF-i];
|
|
y_work[i] = y[0xF-i];
|
|
dst_work[i] = 0;
|
|
}
|
|
|
|
/* Perform operation for each bit in y. */
|
|
for (unsigned int round = 0; round < 0x80; round++) {
|
|
p_dst[0] ^= p_x[0] * ((y_work[0xF] & 0x80) >> 7);
|
|
p_dst[1] ^= p_x[1] * ((y_work[0xF] & 0x80) >> 7);
|
|
_shl_128(p_y);
|
|
uint8_t xval = 0xE1 * (x_work[0] & 1);
|
|
_shr_128(p_x);
|
|
x_work[0xF] ^= xval;
|
|
}
|
|
|
|
for (unsigned int i = 0; i < 0x10; i++) {
|
|
dst[i] = dst_work[0xF-i];
|
|
}
|
|
}
|
|
|
|
static void _ghash(u32 ks, void *dst, const void *src, u32 src_size, const void *j_block, bool encrypt) {
|
|
uint8_t x[0x10] = {0};
|
|
uint8_t h[0x10];
|
|
|
|
uint64_t *p_x = (uint64_t *)(&x[0]);
|
|
uint64_t *p_data = (uint64_t *)src;
|
|
|
|
/* H = aes_ecb_encrypt(zeroes) */
|
|
se_aes_crypt_block_ecb(ks, ENCRYPT, h, x);
|
|
|
|
u64 total_size = src_size;
|
|
|
|
while (src_size >= 0x10) {
|
|
/* X = (X ^ current_block) * H */
|
|
p_x[0] ^= p_data[0];
|
|
p_x[1] ^= p_data[1];
|
|
_gf128_mul(x, x, h);
|
|
|
|
/* Increment p_data by 0x10 bytes. */
|
|
p_data += 2;
|
|
src_size -= 0x10;
|
|
}
|
|
|
|
/* Nintendo's code *discards all data in the last block* if unaligned. */
|
|
/* And treats that block as though it were all-zero. */
|
|
/* This is a bug, they just forget to XOR with the copy of the last block they save. */
|
|
if (src_size & 0xF) {
|
|
_gf128_mul(x, x, h);
|
|
}
|
|
|
|
uint64_t xor_size = total_size << 3;
|
|
xor_size = __builtin_bswap64(xor_size);
|
|
|
|
/* Due to a Nintendo bug, the wrong QWORD gets XOR'd in the "final output block" case. */
|
|
if (encrypt) {
|
|
p_x[0] ^= xor_size;
|
|
} else {
|
|
p_x[1] ^= xor_size;
|
|
}
|
|
|
|
_gf128_mul(x, x, h);
|
|
|
|
/* If final output block, XOR with encrypted J block. */
|
|
if (encrypt) {
|
|
se_aes_crypt_block_ecb(ks, ENCRYPT, h, j_block);
|
|
for (unsigned int i = 0; i < 0x10; i++) {
|
|
x[i] ^= h[i];
|
|
}
|
|
}
|
|
/* Copy output. */
|
|
memcpy(dst, x, 0x10);
|
|
}
|
|
|
|
static bool _test_rsa_keypair(const void *public_exponent, const void *private_exponent, const void *modulus) {
|
|
u8 plaintext[RSA_2048_KEY_SIZE] __attribute__((aligned(4))) = {0},
|
|
ciphertext[RSA_2048_KEY_SIZE] __attribute__((aligned(4))) = {0},
|
|
work[RSA_2048_KEY_SIZE] __attribute__((aligned(4))) = {0};
|
|
|
|
// 0xCAFEBABE
|
|
plaintext[0xfc] = 0xca; plaintext[0xfd] = 0xfe; plaintext[0xfe] = 0xba; plaintext[0xff] = 0xbe;
|
|
|
|
se_rsa_key_set(0, modulus, RSA_2048_KEY_SIZE, private_exponent, RSA_2048_KEY_SIZE);
|
|
se_rsa_exp_mod(0, ciphertext, RSA_2048_KEY_SIZE, plaintext, RSA_2048_KEY_SIZE);
|
|
|
|
se_rsa_key_set(0, modulus, RSA_2048_KEY_SIZE, public_exponent, 4);
|
|
se_rsa_exp_mod(0, work, RSA_2048_KEY_SIZE, ciphertext, RSA_2048_KEY_SIZE);
|
|
|
|
return !memcmp(plaintext, work, RSA_2048_KEY_SIZE);
|
|
}
|