Lockpick_RCM/source/libs/fatfs/diskio.c

248 lines
8 KiB
C
Raw Normal View History

2019-03-05 00:05:42 +01:00
/*
* Copyright (c) 2019 shchmue
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*-----------------------------------------------------------------------*/
/* Low level disk I/O module skeleton for FatFs (C)ChaN, 2016 */
/*-----------------------------------------------------------------------*/
/* If a working storage control module is available, it should be */
/* attached to the FatFs via a glue function rather than modifying it. */
/* This is an example of glue functions to attach various exsisting */
/* storage control modules to the FatFs module with a defined API. */
/*-----------------------------------------------------------------------*/
#include <string.h>
#include "diskio.h" /* FatFs lower layer API */
#include "../../gfx/gfx.h"
#include "../../mem/heap.h"
#include "../../sec/se.h"
#include "../../storage/nx_emmc.h"
#include "../../storage/sdmmc.h"
extern gfx_con_t gfx_con;
extern sdmmc_storage_t sd_storage;
extern sdmmc_storage_t storage;
extern emmc_part_t *system_part;
typedef struct {
u64 b, a;
} le128;
typedef struct {
u32 sector;
u32 visit_count;
u8 tweak[0x10];
u8 cached_sector[0x200];
} sector_cache_t;
#define MAX_SEC_CACHE_ENTRIES 100
static sector_cache_t *sector_cache = NULL;
static u32 secindex = 0;
DSTATUS disk_status (
BYTE pdrv /* Physical drive nmuber to identify the drive */
)
{
return 0;
}
DSTATUS disk_initialize (
BYTE pdrv /* Physical drive nmuber to identify the drive */
)
{
return 0;
}
static inline void _gf256_mul_x_le(void *block) {
u8 *pdata = (u8 *)block;
u32 carry = 0;
for (u32 i = 0; i < 0x10; i++) {
u8 b = pdata[i];
pdata[i] = (b << 1) | carry;
carry = b >> 7;
}
if (carry)
pdata[0x0] ^= 0x87;
}
//8378ms before doing the block op all at once, 2179ms after!
static inline int _emmc_xts(u32 ks1, u32 ks2, u32 enc, u8 *tweak, bool regen_tweak, u32 tweak_exp, u64 sec, void *dst, void *src, u32 secsize) {
int res = 0;
u8 *pdst = (u8 *)dst;
u8 *psrc = (u8 *)src;
if (regen_tweak) {
for (int i = 0xF; i >= 0; i--) {
tweak[i] = sec & 0xFF;
sec >>= 8;
}
if (!se_aes_crypt_block_ecb(ks1, 1, tweak, tweak))
goto out;
}
for (u32 i = 0; i < tweak_exp * 0x20; i++)
_gf256_mul_x_le(tweak);
u8 temptweak[0x10];
memcpy(temptweak, tweak, 0x10);
//We are assuming a 0x10-aligned sector size in this implementation.
for (u32 i = 0; i < secsize / 0x10; i++) {
for (u32 j = 0; j < 0x10; j++)
pdst[j] = psrc[j] ^ tweak[j];
_gf256_mul_x_le(tweak);
psrc += 0x10;
pdst += 0x10;
}
se_aes_crypt_ecb(ks2, 0, dst, secsize, src, secsize);
pdst = (u8 *)dst;
memcpy(tweak, temptweak, 0x10);
for (u32 i = 0; i < secsize / 0x10; i++) {
for (u32 j = 0; j < 0x10; j++)
pdst[j] = pdst[j] ^ tweak[j];
_gf256_mul_x_le(tweak);
pdst += 0x10;
}
res = 1;
out:;
return res;
}
DRESULT disk_read (
BYTE pdrv, /* Physical drive nmuber to identify the drive */
BYTE *buff, /* Data buffer to store read data */
DWORD sector, /* Start sector in LBA */
UINT count /* Number of sectors to read */
)
{
switch (pdrv)
{
case 0:
if ((u32)buff >= 0x90000000)
return sdmmc_storage_read(&sd_storage, sector, count, buff) ? RES_OK : RES_ERROR;
u8 *buf = (u8 *)0x98000000; //TODO: define this somewhere.
if (sdmmc_storage_read(&sd_storage, sector, count, buf))
{
memcpy(buff, buf, 512 * count);
return RES_OK;
}
return RES_ERROR;
case 1:
if (!sector_cache) // init sector cache
sector_cache = (sector_cache_t*)malloc(sizeof(sector_cache_t) * MAX_SEC_CACHE_ENTRIES);
static u8 tweak[0x10];
static u64 prev_cluster = -1;
static u32 prev_sector = 0;
u32 tweak_exp = 0;
bool regen_tweak = true, cache_sector = false;
u32 s = 0;
if (count == 1) {
for ( ; s < secindex; s++) {
if (sector_cache[s].sector == sector) {
sector_cache[s].visit_count++;
memcpy(buff, sector_cache[s].cached_sector, 0x200);
memcpy(tweak, sector_cache[s].tweak, 0x10);
prev_sector = sector;
prev_cluster = sector / 0x20;
//gfx_printf(&gfx_con, "addr %x sec %x count %x cached\n", sector * 0x200, sector, count);
return RES_OK;
}
}
// add to cache
if (s == secindex && s < MAX_SEC_CACHE_ENTRIES) {
sector_cache[s].sector = sector;
sector_cache[s].visit_count++;
cache_sector = true;
secindex++;
}
}
if ((u32)buff >= 0x90000000) {
if (nx_emmc_part_read(&storage, system_part, sector, count, buff)) {
//gfx_hexdump(&gfx_con, 0, buff, 0x100);
if (prev_cluster != sector / 0x20) { // sector in different cluster than last read
prev_cluster = sector / 0x20;
tweak_exp = sector % 0x20;
} else if (sector > prev_sector) { // sector in same cluster and past last sector
tweak_exp = sector - prev_sector - 1;
regen_tweak = false;
} else { // sector in same cluster and before or same as last sector
tweak_exp = sector % 0x20;
}
// fatfs will never pull more than a cluster
//gfx_printf(&gfx_con, "sec %6x count %2x tweak %2x\n", sector, count, tweak_exp);
_emmc_xts(9, 8, 0, tweak, regen_tweak, tweak_exp, prev_cluster, buff, buff, count * 0x200);
if (cache_sector) {
memcpy(sector_cache[s].cached_sector, buff, 0x200);
memcpy(sector_cache[s].tweak, tweak, 0x10);
}
//gfx_hexdump(&gfx_con, 0, buff, 0x10);
prev_sector = sector + count - 1;
return RES_OK;
}
return RES_ERROR;
} else {
u8 *buf = (u8 *)0x98000000;
if (nx_emmc_part_read(&storage, system_part, sector, count, buf)) {
gfx_printf(&gfx_con, "sec %d count %d\n", sector, count);
// _emmc_xts(9, 8, 0, tweak, (sector + 0x20 - 1) / 0x20, buf, buf, count * 0x200);
//se_aes_xts_crypt(8, 9, 0, sector / 0x20, buf, buf, 0x200, (count + 0x20 - 1) / 0x20);
memcpy(buff, buf, 512 * count);
return RES_OK;
}
return RES_ERROR;
}
}
return RES_ERROR;
}
DRESULT disk_write (
BYTE pdrv, /* Physical drive nmuber to identify the drive */
const BYTE *buff, /* Data to be written */
DWORD sector, /* Start sector in LBA */
UINT count /* Number of sectors to write */
)
{
if (pdrv == 1)
return RES_WRPRT;
if ((u32)buff >= 0x90000000)
return sdmmc_storage_write(&sd_storage, sector, count, (void *)buff) ? RES_OK : RES_ERROR;
u8 *buf = (u8 *)0x98000000; //TODO: define this somewhere.
memcpy(buf, buff, 512 * count);
if (sdmmc_storage_write(&sd_storage, sector, count, buf))
return RES_OK;
return RES_ERROR;
}
DRESULT disk_ioctl (
BYTE pdrv, /* Physical drive nmuber (0..) */
BYTE cmd, /* Control code */
void *buff /* Buffer to send/receive control data */
)
{
return RES_OK;
}