// Copyright (C) 2003 Dolphin Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official SVN repository and contact information can be found at // http://code.google.com/p/dolphin-emu/ #include "emitter.h" #include #include #include "abi.h" #include "common/assert.h" #include "common/logging/log.h" #include "common/memory_util.h" #include "cpu_detect.h" namespace Gen { struct NormalOpDef { u8 toRm8, toRm32, fromRm8, fromRm32, imm8, imm32, simm8, eaximm8, eaximm32, ext; }; // 0xCC is code for invalid combination of immediates static const NormalOpDef normalops[11] = { {0x00, 0x01, 0x02, 0x03, 0x80, 0x81, 0x83, 0x04, 0x05, 0}, // ADD {0x10, 0x11, 0x12, 0x13, 0x80, 0x81, 0x83, 0x14, 0x15, 2}, // ADC {0x28, 0x29, 0x2A, 0x2B, 0x80, 0x81, 0x83, 0x2C, 0x2D, 5}, // SUB {0x18, 0x19, 0x1A, 0x1B, 0x80, 0x81, 0x83, 0x1C, 0x1D, 3}, // SBB {0x20, 0x21, 0x22, 0x23, 0x80, 0x81, 0x83, 0x24, 0x25, 4}, // AND {0x08, 0x09, 0x0A, 0x0B, 0x80, 0x81, 0x83, 0x0C, 0x0D, 1}, // OR {0x30, 0x31, 0x32, 0x33, 0x80, 0x81, 0x83, 0x34, 0x35, 6}, // XOR {0x88, 0x89, 0x8A, 0x8B, 0xC6, 0xC7, 0xCC, 0xCC, 0xCC, 0}, // MOV {0x84, 0x85, 0x84, 0x85, 0xF6, 0xF7, 0xCC, 0xA8, 0xA9, 0}, // TEST (to == from) {0x38, 0x39, 0x3A, 0x3B, 0x80, 0x81, 0x83, 0x3C, 0x3D, 7}, // CMP {0x86, 0x87, 0x86, 0x87, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 7}, // XCHG }; enum NormalSSEOps { sseCMP = 0xC2, sseADD = 0x58, // ADD sseSUB = 0x5C, // SUB sseAND = 0x54, // AND sseANDN = 0x55, // ANDN sseOR = 0x56, sseXOR = 0x57, sseMUL = 0x59, // MUL sseDIV = 0x5E, // DIV sseMIN = 0x5D, // MIN sseMAX = 0x5F, // MAX sseCOMIS = 0x2F, // COMIS sseUCOMIS = 0x2E, // UCOMIS sseSQRT = 0x51, // SQRT sseRSQRT = 0x52, // RSQRT (NO DOUBLE PRECISION!!!) sseRCP = 0x53, // RCP sseMOVAPfromRM = 0x28, // MOVAP from RM sseMOVAPtoRM = 0x29, // MOVAP to RM sseMOVUPfromRM = 0x10, // MOVUP from RM sseMOVUPtoRM = 0x11, // MOVUP to RM sseMOVLPfromRM = 0x12, sseMOVLPtoRM = 0x13, sseMOVHPfromRM = 0x16, sseMOVHPtoRM = 0x17, sseMOVHLPS = 0x12, sseMOVLHPS = 0x16, sseMOVDQfromRM = 0x6F, sseMOVDQtoRM = 0x7F, sseMASKMOVDQU = 0xF7, sseLDDQU = 0xF0, sseSHUF = 0xC6, sseMOVNTDQ = 0xE7, sseMOVNTP = 0x2B, sseHADD = 0x7C, }; void XEmitter::SetCodePtr(u8* ptr) { code = ptr; } const u8* XEmitter::GetCodePtr() const { return code; } u8* XEmitter::GetWritableCodePtr() { return code; } void XEmitter::Write8(u8 value) { *code++ = value; } void XEmitter::Write16(u16 value) { std::memcpy(code, &value, sizeof(u16)); code += sizeof(u16); } void XEmitter::Write32(u32 value) { std::memcpy(code, &value, sizeof(u32)); code += sizeof(u32); } void XEmitter::Write64(u64 value) { std::memcpy(code, &value, sizeof(u64)); code += sizeof(u64); } void XEmitter::ReserveCodeSpace(int bytes) { for (int i = 0; i < bytes; i++) *code++ = 0xCC; } const u8* XEmitter::AlignCode4() { int c = int((u64)code & 3); if (c) ReserveCodeSpace(4 - c); return code; } const u8* XEmitter::AlignCode16() { int c = int((u64)code & 15); if (c) ReserveCodeSpace(16 - c); return code; } const u8* XEmitter::AlignCodePage() { int c = int((u64)code & 4095); if (c) ReserveCodeSpace(4096 - c); return code; } // This operation modifies flags; check to see the flags are locked. // If the flags are locked, we should immediately and loudly fail before // causing a subtle JIT bug. void XEmitter::CheckFlags() { ASSERT_MSG(!flags_locked, "Attempt to modify flags while flags locked!"); } void XEmitter::WriteModRM(int mod, int reg, int rm) { Write8((u8)((mod << 6) | ((reg & 7) << 3) | (rm & 7))); } void XEmitter::WriteSIB(int scale, int index, int base) { Write8((u8)((scale << 6) | ((index & 7) << 3) | (base & 7))); } void OpArg::WriteRex(XEmitter* emit, int opBits, int bits, int customOp) const { if (customOp == -1) customOp = operandReg; #ifdef ARCHITECTURE_x86_64 u8 op = 0x40; // REX.W (whether operation is a 64-bit operation) if (opBits == 64) op |= 8; // REX.R (whether ModR/M reg field refers to R8-R15. if (customOp & 8) op |= 4; // REX.X (whether ModR/M SIB index field refers to R8-R15) if (indexReg & 8) op |= 2; // REX.B (whether ModR/M rm or SIB base or opcode reg field refers to R8-R15) if (offsetOrBaseReg & 8) op |= 1; // Write REX if wr have REX bits to write, or if the operation accesses // SIL, DIL, BPL, or SPL. if (op != 0x40 || (scale == SCALE_NONE && bits == 8 && (offsetOrBaseReg & 0x10c) == 4) || (opBits == 8 && (customOp & 0x10c) == 4)) { emit->Write8(op); // Check the operation doesn't access AH, BH, CH, or DH. DEBUG_ASSERT((offsetOrBaseReg & 0x100) == 0); DEBUG_ASSERT((customOp & 0x100) == 0); } #else DEBUG_ASSERT(opBits != 64); DEBUG_ASSERT((customOp & 8) == 0 || customOp == -1); DEBUG_ASSERT((indexReg & 8) == 0); DEBUG_ASSERT((offsetOrBaseReg & 8) == 0); DEBUG_ASSERT(opBits != 8 || (customOp & 0x10c) != 4 || customOp == -1); DEBUG_ASSERT(scale == SCALE_ATREG || bits != 8 || (offsetOrBaseReg & 0x10c) != 4); #endif } void OpArg::WriteVex(XEmitter* emit, X64Reg regOp1, X64Reg regOp2, int L, int pp, int mmmmm, int W) const { int R = !(regOp1 & 8); int X = !(indexReg & 8); int B = !(offsetOrBaseReg & 8); int vvvv = (regOp2 == X64Reg::INVALID_REG) ? 0xf : (regOp2 ^ 0xf); // do we need any VEX fields that only appear in the three-byte form? if (X == 1 && B == 1 && W == 0 && mmmmm == 1) { u8 RvvvvLpp = (R << 7) | (vvvv << 3) | (L << 2) | pp; emit->Write8(0xC5); emit->Write8(RvvvvLpp); } else { u8 RXBmmmmm = (R << 7) | (X << 6) | (B << 5) | mmmmm; u8 WvvvvLpp = (W << 7) | (vvvv << 3) | (L << 2) | pp; emit->Write8(0xC4); emit->Write8(RXBmmmmm); emit->Write8(WvvvvLpp); } } void OpArg::WriteRest(XEmitter* emit, int extraBytes, X64Reg _operandReg, bool warn_64bit_offset) const { if (_operandReg == INVALID_REG) _operandReg = (X64Reg) this->operandReg; int mod = 0; int ireg = indexReg; bool SIB = false; int _offsetOrBaseReg = this->offsetOrBaseReg; if (scale == SCALE_RIP) // Also, on 32-bit, just an immediate address { // Oh, RIP addressing. _offsetOrBaseReg = 5; emit->WriteModRM(0, _operandReg, _offsetOrBaseReg); // TODO : add some checks #ifdef ARCHITECTURE_x86_64 u64 ripAddr = (u64)emit->GetCodePtr() + 4 + extraBytes; s64 distance = (s64)offset - (s64)ripAddr; ASSERT_MSG((distance < 0x80000000LL && distance >= -0x80000000LL) || !warn_64bit_offset, "WriteRest: op out of range (0x%" PRIx64 " uses 0x%" PRIx64 ")", ripAddr, offset); s32 offs = (s32)distance; emit->Write32((u32)offs); #else emit->Write32((u32)offset); #endif return; } if (scale == 0) { // Oh, no memory, Just a reg. mod = 3; // 11 } else if (scale >= 1) { // Ah good, no scaling. if (scale == SCALE_ATREG && !((_offsetOrBaseReg & 7) == 4 || (_offsetOrBaseReg & 7) == 5)) { // Okay, we're good. No SIB necessary. int ioff = (int)offset; if (ioff == 0) { mod = 0; } else if (ioff < -128 || ioff > 127) { mod = 2; // 32-bit displacement } else { mod = 1; // 8-bit displacement } } else if (scale >= SCALE_NOBASE_2 && scale <= SCALE_NOBASE_8) { SIB = true; mod = 0; _offsetOrBaseReg = 5; } else // if (scale != SCALE_ATREG) { if ((_offsetOrBaseReg & 7) == 4) // this would occupy the SIB encoding :( { // So we have to fake it with SIB encoding :( SIB = true; } if (scale >= SCALE_1 && scale < SCALE_ATREG) { SIB = true; } if (scale == SCALE_ATREG && ((_offsetOrBaseReg & 7) == 4)) { SIB = true; ireg = _offsetOrBaseReg; } // Okay, we're fine. Just disp encoding. // We need displacement. Which size? int ioff = (int)(s64)offset; if (ioff < -128 || ioff > 127) { mod = 2; // 32-bit displacement } else { mod = 1; // 8-bit displacement } } } // Okay. Time to do the actual writing // ModRM byte: int oreg = _offsetOrBaseReg; if (SIB) oreg = 4; // TODO(ector): WTF is this if about? I don't remember writing it :-) // if (RIP) // oreg = 5; emit->WriteModRM(mod, _operandReg & 7, oreg & 7); if (SIB) { // SIB byte int ss; switch (scale) { case SCALE_NONE: _offsetOrBaseReg = 4; ss = 0; break; // RSP case SCALE_1: ss = 0; break; case SCALE_2: ss = 1; break; case SCALE_4: ss = 2; break; case SCALE_8: ss = 3; break; case SCALE_NOBASE_2: ss = 1; break; case SCALE_NOBASE_4: ss = 2; break; case SCALE_NOBASE_8: ss = 3; break; case SCALE_ATREG: ss = 0; break; default: ASSERT_MSG(0, "Invalid scale for SIB byte"); ss = 0; break; } emit->Write8((u8)((ss << 6) | ((ireg & 7) << 3) | (_offsetOrBaseReg & 7))); } if (mod == 1) // 8-bit disp { emit->Write8((u8)(s8)(s32)offset); } else if (mod == 2 || (scale >= SCALE_NOBASE_2 && scale <= SCALE_NOBASE_8)) // 32-bit disp { emit->Write32((u32)offset); } } // W = operand extended width (1 if 64-bit) // R = register# upper bit // X = scale amnt upper bit // B = base register# upper bit void XEmitter::Rex(int w, int r, int x, int b) { w = w ? 1 : 0; r = r ? 1 : 0; x = x ? 1 : 0; b = b ? 1 : 0; u8 rx = (u8)(0x40 | (w << 3) | (r << 2) | (x << 1) | (b)); if (rx != 0x40) Write8(rx); } void XEmitter::JMP(const u8* addr, bool force5Bytes) { u64 fn = (u64)addr; if (!force5Bytes) { s64 distance = (s64)(fn - ((u64)code + 2)); ASSERT_MSG(distance >= -0x80 && distance < 0x80, "Jump target too far away, needs force5Bytes = true"); // 8 bits will do Write8(0xEB); Write8((u8)(s8)distance); } else { s64 distance = (s64)(fn - ((u64)code + 5)); ASSERT_MSG(distance >= -0x80000000LL && distance < 0x80000000LL, "Jump target too far away, needs indirect register"); Write8(0xE9); Write32((u32)(s32)distance); } } void XEmitter::JMPptr(const OpArg& arg2) { OpArg arg = arg2; if (arg.IsImm()) ASSERT_MSG(0, "JMPptr - Imm argument"); arg.operandReg = 4; arg.WriteRex(this, 0, 0); Write8(0xFF); arg.WriteRest(this); } // Can be used to trap other processors, before overwriting their code // not used in dolphin void XEmitter::JMPself() { Write8(0xEB); Write8(0xFE); } void XEmitter::CALLptr(OpArg arg) { if (arg.IsImm()) ASSERT_MSG(0, "CALLptr - Imm argument"); arg.operandReg = 2; arg.WriteRex(this, 0, 0); Write8(0xFF); arg.WriteRest(this); } void XEmitter::CALL(const void* fnptr) { u64 distance = u64(fnptr) - (u64(code) + 5); ASSERT_MSG(distance < 0x0000000080000000ULL || distance >= 0xFFFFFFFF80000000ULL, "CALL out of range (%p calls %p)", code, fnptr); Write8(0xE8); Write32(u32(distance)); } FixupBranch XEmitter::CALL() { FixupBranch branch; branch.type = 1; branch.ptr = code + 5; Write8(0xE8); Write32(0); return branch; } FixupBranch XEmitter::J(bool force5bytes) { FixupBranch branch; branch.type = force5bytes ? 1 : 0; branch.ptr = code + (force5bytes ? 5 : 2); if (!force5bytes) { // 8 bits will do Write8(0xEB); Write8(0); } else { Write8(0xE9); Write32(0); } return branch; } FixupBranch XEmitter::J_CC(CCFlags conditionCode, bool force5bytes) { FixupBranch branch; branch.type = force5bytes ? 1 : 0; branch.ptr = code + (force5bytes ? 6 : 2); if (!force5bytes) { // 8 bits will do Write8(0x70 + conditionCode); Write8(0); } else { Write8(0x0F); Write8(0x80 + conditionCode); Write32(0); } return branch; } void XEmitter::J_CC(CCFlags conditionCode, const u8* addr, bool force5bytes) { u64 fn = (u64)addr; s64 distance = (s64)(fn - ((u64)code + 2)); if (distance < -0x80 || distance >= 0x80 || force5bytes) { distance = (s64)(fn - ((u64)code + 6)); ASSERT_MSG(distance >= -0x80000000LL && distance < 0x80000000LL, "Jump target too far away, needs indirect register"); Write8(0x0F); Write8(0x80 + conditionCode); Write32((u32)(s32)distance); } else { Write8(0x70 + conditionCode); Write8((u8)(s8)distance); } } void XEmitter::SetJumpTarget(const FixupBranch& branch) { if (branch.type == 0) { s64 distance = (s64)(code - branch.ptr); ASSERT_MSG(distance >= -0x80 && distance < 0x80, "Jump target too far away, needs force5Bytes = true"); branch.ptr[-1] = (u8)(s8)distance; } else if (branch.type == 1) { s64 distance = (s64)(code - branch.ptr); ASSERT_MSG(distance >= -0x80000000LL && distance < 0x80000000LL, "Jump target too far away, needs indirect register"); ((s32*)branch.ptr)[-1] = (s32)distance; } } void XEmitter::SetJumpTarget(const FixupBranch& branch, const u8* target) { if (branch.type == 0) { s64 distance = (s64)(target - branch.ptr); ASSERT_MSG(distance >= -0x80 && distance < 0x80, "Jump target too far away, needs force5Bytes = true"); branch.ptr[-1] = (u8)(s8)distance; } else if (branch.type == 1) { s64 distance = (s64)(target - branch.ptr); ASSERT_MSG(distance >= -0x80000000LL && distance < 0x80000000LL, "Jump target too far away, needs indirect register"); ((s32*)branch.ptr)[-1] = (s32)distance; } } // Single byte opcodes // There is no PUSHAD/POPAD in 64-bit mode. void XEmitter::INT3() { Write8(0xCC); } void XEmitter::RET() { Write8(0xC3); } void XEmitter::RET_FAST() { Write8(0xF3); Write8(0xC3); } // two-byte return (rep ret) - recommended by AMD optimization manual for the case of jumping to a // ret // The first sign of decadence: optimized NOPs. void XEmitter::NOP(size_t size) { DEBUG_ASSERT((int)size > 0); while (true) { switch (size) { case 0: return; case 1: Write8(0x90); return; case 2: Write8(0x66); Write8(0x90); return; case 3: Write8(0x0F); Write8(0x1F); Write8(0x00); return; case 4: Write8(0x0F); Write8(0x1F); Write8(0x40); Write8(0x00); return; case 5: Write8(0x0F); Write8(0x1F); Write8(0x44); Write8(0x00); Write8(0x00); return; case 6: Write8(0x66); Write8(0x0F); Write8(0x1F); Write8(0x44); Write8(0x00); Write8(0x00); return; case 7: Write8(0x0F); Write8(0x1F); Write8(0x80); Write8(0x00); Write8(0x00); Write8(0x00); Write8(0x00); return; case 8: Write8(0x0F); Write8(0x1F); Write8(0x84); Write8(0x00); Write8(0x00); Write8(0x00); Write8(0x00); Write8(0x00); return; case 9: Write8(0x66); Write8(0x0F); Write8(0x1F); Write8(0x84); Write8(0x00); Write8(0x00); Write8(0x00); Write8(0x00); Write8(0x00); return; case 10: Write8(0x66); Write8(0x66); Write8(0x0F); Write8(0x1F); Write8(0x84); Write8(0x00); Write8(0x00); Write8(0x00); Write8(0x00); Write8(0x00); return; default: // Even though x86 instructions are allowed to be up to 15 bytes long, // AMD advises against using NOPs longer than 11 bytes because they // carry a performance penalty on CPUs older than AMD family 16h. Write8(0x66); Write8(0x66); Write8(0x66); Write8(0x0F); Write8(0x1F); Write8(0x84); Write8(0x00); Write8(0x00); Write8(0x00); Write8(0x00); Write8(0x00); size -= 11; continue; } } } void XEmitter::PAUSE() { Write8(0xF3); NOP(); } // use in tight spinloops for energy saving on some cpu void XEmitter::CLC() { CheckFlags(); Write8(0xF8); } // clear carry void XEmitter::CMC() { CheckFlags(); Write8(0xF5); } // flip carry void XEmitter::STC() { CheckFlags(); Write8(0xF9); } // set carry // TODO: xchg ah, al ??? void XEmitter::XCHG_AHAL() { Write8(0x86); Write8(0xe0); // alt. 86 c4 } // These two can not be executed on early Intel 64-bit CPU:s, only on AMD! void XEmitter::LAHF() { Write8(0x9F); } void XEmitter::SAHF() { CheckFlags(); Write8(0x9E); } void XEmitter::PUSHF() { Write8(0x9C); } void XEmitter::POPF() { CheckFlags(); Write8(0x9D); } void XEmitter::LFENCE() { Write8(0x0F); Write8(0xAE); Write8(0xE8); } void XEmitter::MFENCE() { Write8(0x0F); Write8(0xAE); Write8(0xF0); } void XEmitter::SFENCE() { Write8(0x0F); Write8(0xAE); Write8(0xF8); } void XEmitter::WriteSimple1Byte(int bits, u8 byte, X64Reg reg) { if (bits == 16) Write8(0x66); Rex(bits == 64, 0, 0, (int)reg >> 3); Write8(byte + ((int)reg & 7)); } void XEmitter::WriteSimple2Byte(int bits, u8 byte1, u8 byte2, X64Reg reg) { if (bits == 16) Write8(0x66); Rex(bits == 64, 0, 0, (int)reg >> 3); Write8(byte1); Write8(byte2 + ((int)reg & 7)); } void XEmitter::CWD(int bits) { if (bits == 16) Write8(0x66); Rex(bits == 64, 0, 0, 0); Write8(0x99); } void XEmitter::CBW(int bits) { if (bits == 8) Write8(0x66); Rex(bits == 32, 0, 0, 0); Write8(0x98); } // Simple opcodes // push/pop do not need wide to be 64-bit void XEmitter::PUSH(X64Reg reg) { WriteSimple1Byte(32, 0x50, reg); } void XEmitter::POP(X64Reg reg) { WriteSimple1Byte(32, 0x58, reg); } void XEmitter::PUSH(int bits, const OpArg& reg) { if (reg.IsSimpleReg()) PUSH(reg.GetSimpleReg()); else if (reg.IsImm()) { switch (reg.GetImmBits()) { case 8: Write8(0x6A); Write8((u8)(s8)reg.offset); break; case 16: Write8(0x66); Write8(0x68); Write16((u16)(s16)(s32)reg.offset); break; case 32: Write8(0x68); Write32((u32)reg.offset); break; default: ASSERT_MSG(0, "PUSH - Bad imm bits"); break; } } else { if (bits == 16) Write8(0x66); reg.WriteRex(this, bits, bits); Write8(0xFF); reg.WriteRest(this, 0, (X64Reg)6); } } void XEmitter::POP(int /*bits*/, const OpArg& reg) { if (reg.IsSimpleReg()) POP(reg.GetSimpleReg()); else ASSERT_MSG(0, "POP - Unsupported encoding"); } void XEmitter::BSWAP(int bits, X64Reg reg) { if (bits >= 32) { WriteSimple2Byte(bits, 0x0F, 0xC8, reg); } else if (bits == 16) { ROL(16, R(reg), Imm8(8)); } else if (bits == 8) { // Do nothing - can't bswap a single byte... } else { ASSERT_MSG(0, "BSWAP - Wrong number of bits"); } } // Undefined opcode - reserved // If we ever need a way to always cause a non-breakpoint hard exception... void XEmitter::UD2() { Write8(0x0F); Write8(0x0B); } void XEmitter::PREFETCH(PrefetchLevel level, OpArg arg) { ASSERT_MSG(!arg.IsImm(), "PREFETCH - Imm argument"); arg.operandReg = (u8)level; arg.WriteRex(this, 0, 0); Write8(0x0F); Write8(0x18); arg.WriteRest(this); } void XEmitter::SETcc(CCFlags flag, OpArg dest) { ASSERT_MSG(!dest.IsImm(), "SETcc - Imm argument"); dest.operandReg = 0; dest.WriteRex(this, 0, 8); Write8(0x0F); Write8(0x90 + (u8)flag); dest.WriteRest(this); } void XEmitter::CMOVcc(int bits, X64Reg dest, OpArg src, CCFlags flag) { ASSERT_MSG(!src.IsImm(), "CMOVcc - Imm argument"); ASSERT_MSG(bits != 8, "CMOVcc - 8 bits unsupported"); if (bits == 16) Write8(0x66); src.operandReg = dest; src.WriteRex(this, bits, bits); Write8(0x0F); Write8(0x40 + (u8)flag); src.WriteRest(this); } void XEmitter::WriteMulDivType(int bits, OpArg src, int ext) { ASSERT_MSG(!src.IsImm(), "WriteMulDivType - Imm argument"); CheckFlags(); src.operandReg = ext; if (bits == 16) Write8(0x66); src.WriteRex(this, bits, bits, 0); if (bits == 8) { Write8(0xF6); } else { Write8(0xF7); } src.WriteRest(this); } void XEmitter::MUL(int bits, const OpArg& src) { WriteMulDivType(bits, src, 4); } void XEmitter::DIV(int bits, const OpArg& src) { WriteMulDivType(bits, src, 6); } void XEmitter::IMUL(int bits, const OpArg& src) { WriteMulDivType(bits, src, 5); } void XEmitter::IDIV(int bits, const OpArg& src) { WriteMulDivType(bits, src, 7); } void XEmitter::NEG(int bits, const OpArg& src) { WriteMulDivType(bits, src, 3); } void XEmitter::NOT(int bits, const OpArg& src) { WriteMulDivType(bits, src, 2); } void XEmitter::WriteBitSearchType(int bits, X64Reg dest, OpArg src, u8 byte2, bool rep) { ASSERT_MSG(!src.IsImm(), "WriteBitSearchType - Imm argument"); CheckFlags(); src.operandReg = (u8)dest; if (bits == 16) Write8(0x66); if (rep) Write8(0xF3); src.WriteRex(this, bits, bits); Write8(0x0F); Write8(byte2); src.WriteRest(this); } void XEmitter::MOVNTI(int bits, const OpArg& dest, X64Reg src) { if (bits <= 16) ASSERT_MSG(0, "MOVNTI - bits<=16"); WriteBitSearchType(bits, src, dest, 0xC3); } void XEmitter::BSF(int bits, X64Reg dest, const OpArg& src) { WriteBitSearchType(bits, dest, src, 0xBC); } // Bottom bit to top bit void XEmitter::BSR(int bits, X64Reg dest, const OpArg& src) { WriteBitSearchType(bits, dest, src, 0xBD); } // Top bit to bottom bit void XEmitter::TZCNT(int bits, X64Reg dest, const OpArg& src) { CheckFlags(); if (!Common::GetCPUCaps().bmi1) ASSERT_MSG(0, "Trying to use BMI1 on a system that doesn't support it. Bad programmer."); WriteBitSearchType(bits, dest, src, 0xBC, true); } void XEmitter::LZCNT(int bits, X64Reg dest, const OpArg& src) { CheckFlags(); if (!Common::GetCPUCaps().lzcnt) ASSERT_MSG(0, "Trying to use LZCNT on a system that doesn't support it. Bad programmer."); WriteBitSearchType(bits, dest, src, 0xBD, true); } void XEmitter::MOVSX(int dbits, int sbits, X64Reg dest, OpArg src) { ASSERT_MSG(!src.IsImm(), "MOVSX - Imm argument"); if (dbits == sbits) { MOV(dbits, R(dest), src); return; } src.operandReg = (u8)dest; if (dbits == 16) Write8(0x66); src.WriteRex(this, dbits, sbits); if (sbits == 8) { Write8(0x0F); Write8(0xBE); } else if (sbits == 16) { Write8(0x0F); Write8(0xBF); } else if (sbits == 32 && dbits == 64) { Write8(0x63); } else { Crash(); } src.WriteRest(this); } void XEmitter::MOVZX(int dbits, int sbits, X64Reg dest, OpArg src) { ASSERT_MSG(!src.IsImm(), "MOVZX - Imm argument"); if (dbits == sbits) { MOV(dbits, R(dest), src); return; } src.operandReg = (u8)dest; if (dbits == 16) Write8(0x66); // the 32bit result is automatically zero extended to 64bit src.WriteRex(this, dbits == 64 ? 32 : dbits, sbits); if (sbits == 8) { Write8(0x0F); Write8(0xB6); } else if (sbits == 16) { Write8(0x0F); Write8(0xB7); } else if (sbits == 32 && dbits == 64) { Write8(0x8B); } else { ASSERT_MSG(0, "MOVZX - Invalid size"); } src.WriteRest(this); } void XEmitter::MOVBE(int bits, const OpArg& dest, const OpArg& src) { ASSERT_MSG(Common::GetCPUCaps().movbe, "Generating MOVBE on a system that does not support it."); if (bits == 8) { MOV(bits, dest, src); return; } if (bits == 16) Write8(0x66); if (dest.IsSimpleReg()) { ASSERT_MSG(!src.IsSimpleReg() && !src.IsImm(), "MOVBE: Loading from !mem"); src.WriteRex(this, bits, bits, dest.GetSimpleReg()); Write8(0x0F); Write8(0x38); Write8(0xF0); src.WriteRest(this, 0, dest.GetSimpleReg()); } else if (src.IsSimpleReg()) { ASSERT_MSG(!dest.IsSimpleReg() && !dest.IsImm(), "MOVBE: Storing to !mem"); dest.WriteRex(this, bits, bits, src.GetSimpleReg()); Write8(0x0F); Write8(0x38); Write8(0xF1); dest.WriteRest(this, 0, src.GetSimpleReg()); } else { ASSERT_MSG(0, "MOVBE: Not loading or storing to mem"); } } void XEmitter::LEA(int bits, X64Reg dest, OpArg src) { ASSERT_MSG(!src.IsImm(), "LEA - Imm argument"); src.operandReg = (u8)dest; if (bits == 16) Write8(0x66); // TODO: performance warning src.WriteRex(this, bits, bits); Write8(0x8D); src.WriteRest(this, 0, INVALID_REG, bits == 64); } // shift can be either imm8 or cl void XEmitter::WriteShift(int bits, OpArg dest, const OpArg& shift, int ext) { CheckFlags(); bool writeImm = false; if (dest.IsImm()) { ASSERT_MSG(0, "WriteShift - can't shift imms"); } if ((shift.IsSimpleReg() && shift.GetSimpleReg() != ECX) || (shift.IsImm() && shift.GetImmBits() != 8)) { ASSERT_MSG(0, "WriteShift - illegal argument"); } dest.operandReg = ext; if (bits == 16) Write8(0x66); dest.WriteRex(this, bits, bits, 0); if (shift.GetImmBits() == 8) { // ok an imm u8 imm = (u8)shift.offset; if (imm == 1) { Write8(bits == 8 ? 0xD0 : 0xD1); } else { writeImm = true; Write8(bits == 8 ? 0xC0 : 0xC1); } } else { Write8(bits == 8 ? 0xD2 : 0xD3); } dest.WriteRest(this, writeImm ? 1 : 0); if (writeImm) Write8((u8)shift.offset); } // large rotates and shift are slower on intel than amd // intel likes to rotate by 1, and the op is smaller too void XEmitter::ROL(int bits, const OpArg& dest, const OpArg& shift) { WriteShift(bits, dest, shift, 0); } void XEmitter::ROR(int bits, const OpArg& dest, const OpArg& shift) { WriteShift(bits, dest, shift, 1); } void XEmitter::RCL(int bits, const OpArg& dest, const OpArg& shift) { WriteShift(bits, dest, shift, 2); } void XEmitter::RCR(int bits, const OpArg& dest, const OpArg& shift) { WriteShift(bits, dest, shift, 3); } void XEmitter::SHL(int bits, const OpArg& dest, const OpArg& shift) { WriteShift(bits, dest, shift, 4); } void XEmitter::SHR(int bits, const OpArg& dest, const OpArg& shift) { WriteShift(bits, dest, shift, 5); } void XEmitter::SAR(int bits, const OpArg& dest, const OpArg& shift) { WriteShift(bits, dest, shift, 7); } // index can be either imm8 or register, don't use memory destination because it's slow void XEmitter::WriteBitTest(int bits, const OpArg& dest, const OpArg& index, int ext) { CheckFlags(); if (dest.IsImm()) { ASSERT_MSG(0, "WriteBitTest - can't test imms"); } if ((index.IsImm() && index.GetImmBits() != 8)) { ASSERT_MSG(0, "WriteBitTest - illegal argument"); } if (bits == 16) Write8(0x66); if (index.IsImm()) { dest.WriteRex(this, bits, bits); Write8(0x0F); Write8(0xBA); dest.WriteRest(this, 1, (X64Reg)ext); Write8((u8)index.offset); } else { X64Reg operand = index.GetSimpleReg(); dest.WriteRex(this, bits, bits, operand); Write8(0x0F); Write8(0x83 + 8 * ext); dest.WriteRest(this, 1, operand); } } void XEmitter::BT(int bits, const OpArg& dest, const OpArg& index) { WriteBitTest(bits, dest, index, 4); } void XEmitter::BTS(int bits, const OpArg& dest, const OpArg& index) { WriteBitTest(bits, dest, index, 5); } void XEmitter::BTR(int bits, const OpArg& dest, const OpArg& index) { WriteBitTest(bits, dest, index, 6); } void XEmitter::BTC(int bits, const OpArg& dest, const OpArg& index) { WriteBitTest(bits, dest, index, 7); } // shift can be either imm8 or cl void XEmitter::SHRD(int bits, const OpArg& dest, const OpArg& src, const OpArg& shift) { CheckFlags(); if (dest.IsImm()) { ASSERT_MSG(0, "SHRD - can't use imms as destination"); } if (!src.IsSimpleReg()) { ASSERT_MSG(0, "SHRD - must use simple register as source"); } if ((shift.IsSimpleReg() && shift.GetSimpleReg() != ECX) || (shift.IsImm() && shift.GetImmBits() != 8)) { ASSERT_MSG(0, "SHRD - illegal shift"); } if (bits == 16) Write8(0x66); X64Reg operand = src.GetSimpleReg(); dest.WriteRex(this, bits, bits, operand); if (shift.GetImmBits() == 8) { Write8(0x0F); Write8(0xAC); dest.WriteRest(this, 1, operand); Write8((u8)shift.offset); } else { Write8(0x0F); Write8(0xAD); dest.WriteRest(this, 0, operand); } } void XEmitter::SHLD(int bits, const OpArg& dest, const OpArg& src, const OpArg& shift) { CheckFlags(); if (dest.IsImm()) { ASSERT_MSG(0, "SHLD - can't use imms as destination"); } if (!src.IsSimpleReg()) { ASSERT_MSG(0, "SHLD - must use simple register as source"); } if ((shift.IsSimpleReg() && shift.GetSimpleReg() != ECX) || (shift.IsImm() && shift.GetImmBits() != 8)) { ASSERT_MSG(0, "SHLD - illegal shift"); } if (bits == 16) Write8(0x66); X64Reg operand = src.GetSimpleReg(); dest.WriteRex(this, bits, bits, operand); if (shift.GetImmBits() == 8) { Write8(0x0F); Write8(0xA4); dest.WriteRest(this, 1, operand); Write8((u8)shift.offset); } else { Write8(0x0F); Write8(0xA5); dest.WriteRest(this, 0, operand); } } void OpArg::WriteSingleByteOp(XEmitter* emit, u8 op, X64Reg _operandReg, int bits) { if (bits == 16) emit->Write8(0x66); this->operandReg = (u8)_operandReg; WriteRex(emit, bits, bits); emit->Write8(op); WriteRest(emit); } // operand can either be immediate or register void OpArg::WriteNormalOp(XEmitter* emit, bool toRM, NormalOp op, const OpArg& operand, int bits) const { X64Reg _operandReg; if (IsImm()) { ASSERT_MSG(0, "WriteNormalOp - Imm argument, wrong order"); } if (bits == 16) emit->Write8(0x66); int immToWrite = 0; if (operand.IsImm()) { WriteRex(emit, bits, bits); if (!toRM) { ASSERT_MSG(0, "WriteNormalOp - Writing to Imm (!toRM)"); } if (operand.scale == SCALE_IMM8 && bits == 8) { // op al, imm8 if (!scale && offsetOrBaseReg == AL && normalops[op].eaximm8 != 0xCC) { emit->Write8(normalops[op].eaximm8); emit->Write8((u8)operand.offset); return; } // mov reg, imm8 if (!scale && op == nrmMOV) { emit->Write8(0xB0 + (offsetOrBaseReg & 7)); emit->Write8((u8)operand.offset); return; } // op r/m8, imm8 emit->Write8(normalops[op].imm8); immToWrite = 8; } else if ((operand.scale == SCALE_IMM16 && bits == 16) || (operand.scale == SCALE_IMM32 && bits == 32) || (operand.scale == SCALE_IMM32 && bits == 64)) { // Try to save immediate size if we can, but first check to see // if the instruction supports simm8. // op r/m, imm8 if (normalops[op].simm8 != 0xCC && ((operand.scale == SCALE_IMM16 && (s16)operand.offset == (s8)operand.offset) || (operand.scale == SCALE_IMM32 && (s32)operand.offset == (s8)operand.offset))) { emit->Write8(normalops[op].simm8); immToWrite = 8; } else { // mov reg, imm if (!scale && op == nrmMOV && bits != 64) { emit->Write8(0xB8 + (offsetOrBaseReg & 7)); if (bits == 16) emit->Write16((u16)operand.offset); else emit->Write32((u32)operand.offset); return; } // op eax, imm if (!scale && offsetOrBaseReg == EAX && normalops[op].eaximm32 != 0xCC) { emit->Write8(normalops[op].eaximm32); if (bits == 16) emit->Write16((u16)operand.offset); else emit->Write32((u32)operand.offset); return; } // op r/m, imm emit->Write8(normalops[op].imm32); immToWrite = bits == 16 ? 16 : 32; } } else if ((operand.scale == SCALE_IMM8 && bits == 16) || (operand.scale == SCALE_IMM8 && bits == 32) || (operand.scale == SCALE_IMM8 && bits == 64)) { // op r/m, imm8 emit->Write8(normalops[op].simm8); immToWrite = 8; } else if (operand.scale == SCALE_IMM64 && bits == 64) { if (scale) { ASSERT_MSG(0, "WriteNormalOp - MOV with 64-bit imm requres register destination"); } // mov reg64, imm64 else if (op == nrmMOV) { emit->Write8(0xB8 + (offsetOrBaseReg & 7)); emit->Write64((u64)operand.offset); return; } ASSERT_MSG(0, "WriteNormalOp - Only MOV can take 64-bit imm"); } else { ASSERT_MSG(0, "WriteNormalOp - Unhandled case"); } _operandReg = (X64Reg)normalops[op].ext; // pass extension in REG of ModRM } else { _operandReg = (X64Reg)operand.offsetOrBaseReg; WriteRex(emit, bits, bits, _operandReg); // op r/m, reg if (toRM) { emit->Write8(bits == 8 ? normalops[op].toRm8 : normalops[op].toRm32); } // op reg, r/m else { emit->Write8(bits == 8 ? normalops[op].fromRm8 : normalops[op].fromRm32); } } WriteRest(emit, immToWrite >> 3, _operandReg); switch (immToWrite) { case 0: break; case 8: emit->Write8((u8)operand.offset); break; case 16: emit->Write16((u16)operand.offset); break; case 32: emit->Write32((u32)operand.offset); break; default: ASSERT_MSG(0, "WriteNormalOp - Unhandled case"); } } void XEmitter::WriteNormalOp(XEmitter* emit, int bits, NormalOp op, const OpArg& a1, const OpArg& a2) { if (a1.IsImm()) { // Booh! Can't write to an imm ASSERT_MSG(0, "WriteNormalOp - a1 cannot be imm"); return; } if (a2.IsImm()) { a1.WriteNormalOp(emit, true, op, a2, bits); } else { if (a1.IsSimpleReg()) { a2.WriteNormalOp(emit, false, op, a1, bits); } else { ASSERT_MSG(a2.IsSimpleReg() || a2.IsImm(), "WriteNormalOp - a1 and a2 cannot both be memory"); a1.WriteNormalOp(emit, true, op, a2, bits); } } } void XEmitter::ADD(int bits, const OpArg& a1, const OpArg& a2) { CheckFlags(); WriteNormalOp(this, bits, nrmADD, a1, a2); } void XEmitter::ADC(int bits, const OpArg& a1, const OpArg& a2) { CheckFlags(); WriteNormalOp(this, bits, nrmADC, a1, a2); } void XEmitter::SUB(int bits, const OpArg& a1, const OpArg& a2) { CheckFlags(); WriteNormalOp(this, bits, nrmSUB, a1, a2); } void XEmitter::SBB(int bits, const OpArg& a1, const OpArg& a2) { CheckFlags(); WriteNormalOp(this, bits, nrmSBB, a1, a2); } void XEmitter::AND(int bits, const OpArg& a1, const OpArg& a2) { CheckFlags(); WriteNormalOp(this, bits, nrmAND, a1, a2); } void XEmitter::OR(int bits, const OpArg& a1, const OpArg& a2) { CheckFlags(); WriteNormalOp(this, bits, nrmOR, a1, a2); } void XEmitter::XOR(int bits, const OpArg& a1, const OpArg& a2) { CheckFlags(); WriteNormalOp(this, bits, nrmXOR, a1, a2); } void XEmitter::MOV(int bits, const OpArg& a1, const OpArg& a2) { if (a1.IsSimpleReg() && a2.IsSimpleReg() && a1.GetSimpleReg() == a2.GetSimpleReg()) LOG_ERROR(Common, "Redundant MOV @ %p - bug in JIT?", code); WriteNormalOp(this, bits, nrmMOV, a1, a2); } void XEmitter::TEST(int bits, const OpArg& a1, const OpArg& a2) { CheckFlags(); WriteNormalOp(this, bits, nrmTEST, a1, a2); } void XEmitter::CMP(int bits, const OpArg& a1, const OpArg& a2) { CheckFlags(); WriteNormalOp(this, bits, nrmCMP, a1, a2); } void XEmitter::XCHG(int bits, const OpArg& a1, const OpArg& a2) { WriteNormalOp(this, bits, nrmXCHG, a1, a2); } void XEmitter::IMUL(int bits, X64Reg regOp, const OpArg& a1, const OpArg& a2) { CheckFlags(); if (bits == 8) { ASSERT_MSG(0, "IMUL - illegal bit size!"); return; } if (a1.IsImm()) { ASSERT_MSG(0, "IMUL - second arg cannot be imm!"); return; } if (!a2.IsImm()) { ASSERT_MSG(0, "IMUL - third arg must be imm!"); return; } if (bits == 16) Write8(0x66); a1.WriteRex(this, bits, bits, regOp); if (a2.GetImmBits() == 8 || (a2.GetImmBits() == 16 && (s8)a2.offset == (s16)a2.offset) || (a2.GetImmBits() == 32 && (s8)a2.offset == (s32)a2.offset)) { Write8(0x6B); a1.WriteRest(this, 1, regOp); Write8((u8)a2.offset); } else { Write8(0x69); if (a2.GetImmBits() == 16 && bits == 16) { a1.WriteRest(this, 2, regOp); Write16((u16)a2.offset); } else if (a2.GetImmBits() == 32 && (bits == 32 || bits == 64)) { a1.WriteRest(this, 4, regOp); Write32((u32)a2.offset); } else { ASSERT_MSG(0, "IMUL - unhandled case!"); } } } void XEmitter::IMUL(int bits, X64Reg regOp, const OpArg& a) { CheckFlags(); if (bits == 8) { ASSERT_MSG(0, "IMUL - illegal bit size!"); return; } if (a.IsImm()) { IMUL(bits, regOp, R(regOp), a); return; } if (bits == 16) Write8(0x66); a.WriteRex(this, bits, bits, regOp); Write8(0x0F); Write8(0xAF); a.WriteRest(this, 0, regOp); } void XEmitter::WriteSSEOp(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes) { if (opPrefix) Write8(opPrefix); arg.operandReg = regOp; arg.WriteRex(this, 0, 0); Write8(0x0F); if (op > 0xFF) Write8((op >> 8) & 0xFF); Write8(op & 0xFF); arg.WriteRest(this, extrabytes); } void XEmitter::WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp, const OpArg& arg, int extrabytes) { WriteAVXOp(opPrefix, op, regOp, INVALID_REG, arg, extrabytes); } static int GetVEXmmmmm(u16 op) { // Currently, only 0x38 and 0x3A are used as secondary escape byte. if ((op >> 8) == 0x3A) return 3; if ((op >> 8) == 0x38) return 2; return 1; } static int GetVEXpp(u8 opPrefix) { if (opPrefix == 0x66) return 1; if (opPrefix == 0xF3) return 2; if (opPrefix == 0xF2) return 3; return 0; } void XEmitter::WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int extrabytes) { if (!Common::GetCPUCaps().avx) ASSERT_MSG(0, "Trying to use AVX on a system that doesn't support it. Bad programmer."); int mmmmm = GetVEXmmmmm(op); int pp = GetVEXpp(opPrefix); // FIXME: we currently don't support 256-bit instructions, and "size" is not the vector size // here arg.WriteVex(this, regOp1, regOp2, 0, pp, mmmmm); Write8(op & 0xFF); arg.WriteRest(this, extrabytes, regOp1); } // Like the above, but more general; covers GPR-based VEX operations, like BMI1/2 void XEmitter::WriteVEXOp(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int extrabytes) { if (size != 32 && size != 64) ASSERT_MSG(0, "VEX GPR instructions only support 32-bit and 64-bit modes!"); int mmmmm = GetVEXmmmmm(op); int pp = GetVEXpp(opPrefix); arg.WriteVex(this, regOp1, regOp2, 0, pp, mmmmm, size == 64); Write8(op & 0xFF); arg.WriteRest(this, extrabytes, regOp1); } void XEmitter::WriteBMI1Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int extrabytes) { CheckFlags(); if (!Common::GetCPUCaps().bmi1) ASSERT_MSG(0, "Trying to use BMI1 on a system that doesn't support it. Bad programmer."); WriteVEXOp(size, opPrefix, op, regOp1, regOp2, arg, extrabytes); } void XEmitter::WriteBMI2Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int extrabytes) { CheckFlags(); if (!Common::GetCPUCaps().bmi2) ASSERT_MSG(0, "Trying to use BMI2 on a system that doesn't support it. Bad programmer."); WriteVEXOp(size, opPrefix, op, regOp1, regOp2, arg, extrabytes); } void XEmitter::MOVD_xmm(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0x6E, dest, arg, 0); } void XEmitter::MOVD_xmm(const OpArg& arg, X64Reg src) { WriteSSEOp(0x66, 0x7E, src, arg, 0); } void XEmitter::MOVQ_xmm(X64Reg dest, OpArg arg) { #ifdef ARCHITECTURE_x86_64 // Alternate encoding // This does not display correctly in MSVC's debugger, it thinks it's a MOVD arg.operandReg = dest; Write8(0x66); arg.WriteRex(this, 64, 0); Write8(0x0f); Write8(0x6E); arg.WriteRest(this, 0); #else arg.operandReg = dest; Write8(0xF3); Write8(0x0f); Write8(0x7E); arg.WriteRest(this, 0); #endif } void XEmitter::MOVQ_xmm(OpArg arg, X64Reg src) { if (src > 7 || arg.IsSimpleReg()) { // Alternate encoding // This does not display correctly in MSVC's debugger, it thinks it's a MOVD arg.operandReg = src; Write8(0x66); arg.WriteRex(this, 64, 0); Write8(0x0f); Write8(0x7E); arg.WriteRest(this, 0); } else { arg.operandReg = src; arg.WriteRex(this, 0, 0); Write8(0x66); Write8(0x0f); Write8(0xD6); arg.WriteRest(this, 0); } } void XEmitter::WriteMXCSR(OpArg arg, int ext) { if (arg.IsImm() || arg.IsSimpleReg()) ASSERT_MSG(0, "MXCSR - invalid operand"); arg.operandReg = ext; arg.WriteRex(this, 0, 0); Write8(0x0F); Write8(0xAE); arg.WriteRest(this); } void XEmitter::STMXCSR(const OpArg& memloc) { WriteMXCSR(memloc, 3); } void XEmitter::LDMXCSR(const OpArg& memloc) { WriteMXCSR(memloc, 2); } void XEmitter::MOVNTDQ(const OpArg& arg, X64Reg regOp) { WriteSSEOp(0x66, sseMOVNTDQ, regOp, arg); } void XEmitter::MOVNTPS(const OpArg& arg, X64Reg regOp) { WriteSSEOp(0x00, sseMOVNTP, regOp, arg); } void XEmitter::MOVNTPD(const OpArg& arg, X64Reg regOp) { WriteSSEOp(0x66, sseMOVNTP, regOp, arg); } void XEmitter::ADDSS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0xF3, sseADD, regOp, arg); } void XEmitter::ADDSD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0xF2, sseADD, regOp, arg); } void XEmitter::SUBSS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0xF3, sseSUB, regOp, arg); } void XEmitter::SUBSD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0xF2, sseSUB, regOp, arg); } void XEmitter::CMPSS(X64Reg regOp, const OpArg& arg, u8 compare) { WriteSSEOp(0xF3, sseCMP, regOp, arg, 1); Write8(compare); } void XEmitter::CMPSD(X64Reg regOp, const OpArg& arg, u8 compare) { WriteSSEOp(0xF2, sseCMP, regOp, arg, 1); Write8(compare); } void XEmitter::MULSS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0xF3, sseMUL, regOp, arg); } void XEmitter::MULSD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0xF2, sseMUL, regOp, arg); } void XEmitter::DIVSS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0xF3, sseDIV, regOp, arg); } void XEmitter::DIVSD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0xF2, sseDIV, regOp, arg); } void XEmitter::MINSS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0xF3, sseMIN, regOp, arg); } void XEmitter::MINSD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0xF2, sseMIN, regOp, arg); } void XEmitter::MAXSS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0xF3, sseMAX, regOp, arg); } void XEmitter::MAXSD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0xF2, sseMAX, regOp, arg); } void XEmitter::SQRTSS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0xF3, sseSQRT, regOp, arg); } void XEmitter::SQRTSD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0xF2, sseSQRT, regOp, arg); } void XEmitter::RCPSS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0xF3, sseRCP, regOp, arg); } void XEmitter::RSQRTSS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0xF3, sseRSQRT, regOp, arg); } void XEmitter::ADDPS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x00, sseADD, regOp, arg); } void XEmitter::ADDPD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x66, sseADD, regOp, arg); } void XEmitter::SUBPS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x00, sseSUB, regOp, arg); } void XEmitter::SUBPD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x66, sseSUB, regOp, arg); } void XEmitter::CMPPS(X64Reg regOp, const OpArg& arg, u8 compare) { WriteSSEOp(0x00, sseCMP, regOp, arg, 1); Write8(compare); } void XEmitter::CMPPD(X64Reg regOp, const OpArg& arg, u8 compare) { WriteSSEOp(0x66, sseCMP, regOp, arg, 1); Write8(compare); } void XEmitter::ANDPS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x00, sseAND, regOp, arg); } void XEmitter::ANDPD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x66, sseAND, regOp, arg); } void XEmitter::ANDNPS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x00, sseANDN, regOp, arg); } void XEmitter::ANDNPD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x66, sseANDN, regOp, arg); } void XEmitter::ORPS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x00, sseOR, regOp, arg); } void XEmitter::ORPD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x66, sseOR, regOp, arg); } void XEmitter::XORPS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x00, sseXOR, regOp, arg); } void XEmitter::XORPD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x66, sseXOR, regOp, arg); } void XEmitter::MULPS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x00, sseMUL, regOp, arg); } void XEmitter::MULPD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x66, sseMUL, regOp, arg); } void XEmitter::DIVPS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x00, sseDIV, regOp, arg); } void XEmitter::DIVPD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x66, sseDIV, regOp, arg); } void XEmitter::MINPS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x00, sseMIN, regOp, arg); } void XEmitter::MINPD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x66, sseMIN, regOp, arg); } void XEmitter::MAXPS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x00, sseMAX, regOp, arg); } void XEmitter::MAXPD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x66, sseMAX, regOp, arg); } void XEmitter::SQRTPS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x00, sseSQRT, regOp, arg); } void XEmitter::SQRTPD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x66, sseSQRT, regOp, arg); } void XEmitter::RCPPS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x00, sseRCP, regOp, arg); } void XEmitter::RSQRTPS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x00, sseRSQRT, regOp, arg); } void XEmitter::SHUFPS(X64Reg regOp, const OpArg& arg, u8 shuffle) { WriteSSEOp(0x00, sseSHUF, regOp, arg, 1); Write8(shuffle); } void XEmitter::SHUFPD(X64Reg regOp, const OpArg& arg, u8 shuffle) { WriteSSEOp(0x66, sseSHUF, regOp, arg, 1); Write8(shuffle); } void XEmitter::HADDPS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0xF2, sseHADD, regOp, arg); } void XEmitter::COMISS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x00, sseCOMIS, regOp, arg); } // weird that these should be packed void XEmitter::COMISD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x66, sseCOMIS, regOp, arg); } // ordered void XEmitter::UCOMISS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x00, sseUCOMIS, regOp, arg); } // unordered void XEmitter::UCOMISD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x66, sseUCOMIS, regOp, arg); } void XEmitter::MOVAPS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x00, sseMOVAPfromRM, regOp, arg); } void XEmitter::MOVAPD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x66, sseMOVAPfromRM, regOp, arg); } void XEmitter::MOVAPS(const OpArg& arg, X64Reg regOp) { WriteSSEOp(0x00, sseMOVAPtoRM, regOp, arg); } void XEmitter::MOVAPD(const OpArg& arg, X64Reg regOp) { WriteSSEOp(0x66, sseMOVAPtoRM, regOp, arg); } void XEmitter::MOVUPS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x00, sseMOVUPfromRM, regOp, arg); } void XEmitter::MOVUPD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x66, sseMOVUPfromRM, regOp, arg); } void XEmitter::MOVUPS(const OpArg& arg, X64Reg regOp) { WriteSSEOp(0x00, sseMOVUPtoRM, regOp, arg); } void XEmitter::MOVUPD(const OpArg& arg, X64Reg regOp) { WriteSSEOp(0x66, sseMOVUPtoRM, regOp, arg); } void XEmitter::MOVDQA(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x66, sseMOVDQfromRM, regOp, arg); } void XEmitter::MOVDQA(const OpArg& arg, X64Reg regOp) { WriteSSEOp(0x66, sseMOVDQtoRM, regOp, arg); } void XEmitter::MOVDQU(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0xF3, sseMOVDQfromRM, regOp, arg); } void XEmitter::MOVDQU(const OpArg& arg, X64Reg regOp) { WriteSSEOp(0xF3, sseMOVDQtoRM, regOp, arg); } void XEmitter::MOVSS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0xF3, sseMOVUPfromRM, regOp, arg); } void XEmitter::MOVSD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0xF2, sseMOVUPfromRM, regOp, arg); } void XEmitter::MOVSS(const OpArg& arg, X64Reg regOp) { WriteSSEOp(0xF3, sseMOVUPtoRM, regOp, arg); } void XEmitter::MOVSD(const OpArg& arg, X64Reg regOp) { WriteSSEOp(0xF2, sseMOVUPtoRM, regOp, arg); } void XEmitter::MOVLPS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x00, sseMOVLPfromRM, regOp, arg); } void XEmitter::MOVLPD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x66, sseMOVLPfromRM, regOp, arg); } void XEmitter::MOVLPS(const OpArg& arg, X64Reg regOp) { WriteSSEOp(0x00, sseMOVLPtoRM, regOp, arg); } void XEmitter::MOVLPD(const OpArg& arg, X64Reg regOp) { WriteSSEOp(0x66, sseMOVLPtoRM, regOp, arg); } void XEmitter::MOVHPS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x00, sseMOVHPfromRM, regOp, arg); } void XEmitter::MOVHPD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x66, sseMOVHPfromRM, regOp, arg); } void XEmitter::MOVHPS(const OpArg& arg, X64Reg regOp) { WriteSSEOp(0x00, sseMOVHPtoRM, regOp, arg); } void XEmitter::MOVHPD(const OpArg& arg, X64Reg regOp) { WriteSSEOp(0x66, sseMOVHPtoRM, regOp, arg); } void XEmitter::MOVHLPS(X64Reg regOp1, X64Reg regOp2) { WriteSSEOp(0x00, sseMOVHLPS, regOp1, R(regOp2)); } void XEmitter::MOVLHPS(X64Reg regOp1, X64Reg regOp2) { WriteSSEOp(0x00, sseMOVLHPS, regOp1, R(regOp2)); } void XEmitter::CVTPS2PD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x00, 0x5A, regOp, arg); } void XEmitter::CVTPD2PS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x66, 0x5A, regOp, arg); } void XEmitter::CVTSD2SS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0xF2, 0x5A, regOp, arg); } void XEmitter::CVTSS2SD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0xF3, 0x5A, regOp, arg); } void XEmitter::CVTSD2SI(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0xF2, 0x2D, regOp, arg); } void XEmitter::CVTSS2SI(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0xF3, 0x2D, regOp, arg); } void XEmitter::CVTSI2SD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0xF2, 0x2A, regOp, arg); } void XEmitter::CVTSI2SS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0xF3, 0x2A, regOp, arg); } void XEmitter::CVTDQ2PD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0xF3, 0xE6, regOp, arg); } void XEmitter::CVTDQ2PS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x00, 0x5B, regOp, arg); } void XEmitter::CVTPD2DQ(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0xF2, 0xE6, regOp, arg); } void XEmitter::CVTPS2DQ(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x66, 0x5B, regOp, arg); } void XEmitter::CVTTSD2SI(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0xF2, 0x2C, regOp, arg); } void XEmitter::CVTTSS2SI(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0xF3, 0x2C, regOp, arg); } void XEmitter::CVTTPS2DQ(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0xF3, 0x5B, regOp, arg); } void XEmitter::CVTTPD2DQ(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x66, 0xE6, regOp, arg); } void XEmitter::MASKMOVDQU(X64Reg dest, X64Reg src) { WriteSSEOp(0x66, sseMASKMOVDQU, dest, R(src)); } void XEmitter::MOVMSKPS(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x00, 0x50, dest, arg); } void XEmitter::MOVMSKPD(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0x50, dest, arg); } void XEmitter::LDDQU(X64Reg dest, const OpArg& arg) { WriteSSEOp(0xF2, sseLDDQU, dest, arg); } // For integer data only // THESE TWO ARE UNTESTED. void XEmitter::UNPCKLPS(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x00, 0x14, dest, arg); } void XEmitter::UNPCKHPS(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x00, 0x15, dest, arg); } void XEmitter::UNPCKLPD(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0x14, dest, arg); } void XEmitter::UNPCKHPD(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0x15, dest, arg); } void XEmitter::MOVDDUP(X64Reg regOp, const OpArg& arg) { if (Common::GetCPUCaps().sse3) { WriteSSEOp(0xF2, 0x12, regOp, arg); // SSE3 movddup } else { // Simulate this instruction with SSE2 instructions if (!arg.IsSimpleReg(regOp)) MOVSD(regOp, arg); UNPCKLPD(regOp, R(regOp)); } } // There are a few more left // Also some integer instructions are missing void XEmitter::PACKSSDW(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0x6B, dest, arg); } void XEmitter::PACKSSWB(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0x63, dest, arg); } void XEmitter::PACKUSWB(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0x67, dest, arg); } void XEmitter::PUNPCKLBW(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0x60, dest, arg); } void XEmitter::PUNPCKLWD(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0x61, dest, arg); } void XEmitter::PUNPCKLDQ(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0x62, dest, arg); } void XEmitter::PUNPCKLQDQ(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0x6C, dest, arg); } void XEmitter::PSRLW(X64Reg reg, int shift) { WriteSSEOp(0x66, 0x71, (X64Reg)2, R(reg)); Write8(shift); } void XEmitter::PSRLD(X64Reg reg, int shift) { WriteSSEOp(0x66, 0x72, (X64Reg)2, R(reg)); Write8(shift); } void XEmitter::PSRLQ(X64Reg reg, int shift) { WriteSSEOp(0x66, 0x73, (X64Reg)2, R(reg)); Write8(shift); } void XEmitter::PSRLQ(X64Reg reg, const OpArg& arg) { WriteSSEOp(0x66, 0xd3, reg, arg); } void XEmitter::PSRLDQ(X64Reg reg, int shift) { WriteSSEOp(0x66, 0x73, (X64Reg)3, R(reg)); Write8(shift); } void XEmitter::PSLLW(X64Reg reg, int shift) { WriteSSEOp(0x66, 0x71, (X64Reg)6, R(reg)); Write8(shift); } void XEmitter::PSLLD(X64Reg reg, int shift) { WriteSSEOp(0x66, 0x72, (X64Reg)6, R(reg)); Write8(shift); } void XEmitter::PSLLQ(X64Reg reg, int shift) { WriteSSEOp(0x66, 0x73, (X64Reg)6, R(reg)); Write8(shift); } void XEmitter::PSLLDQ(X64Reg reg, int shift) { WriteSSEOp(0x66, 0x73, (X64Reg)7, R(reg)); Write8(shift); } void XEmitter::PSRAW(X64Reg reg, int shift) { WriteSSEOp(0x66, 0x71, (X64Reg)4, R(reg)); Write8(shift); } void XEmitter::PSRAD(X64Reg reg, int shift) { WriteSSEOp(0x66, 0x72, (X64Reg)4, R(reg)); Write8(shift); } void XEmitter::WriteSSSE3Op(u8 opPrefix, u16 op, X64Reg regOp, const OpArg& arg, int extrabytes) { if (!Common::GetCPUCaps().ssse3) ASSERT_MSG(0, "Trying to use SSSE3 on a system that doesn't support it. Bad programmer."); WriteSSEOp(opPrefix, op, regOp, arg, extrabytes); } void XEmitter::WriteSSE41Op(u8 opPrefix, u16 op, X64Reg regOp, const OpArg& arg, int extrabytes) { if (!Common::GetCPUCaps().sse4_1) ASSERT_MSG(0, "Trying to use SSE4.1 on a system that doesn't support it. Bad programmer."); WriteSSEOp(opPrefix, op, regOp, arg, extrabytes); } void XEmitter::PSHUFB(X64Reg dest, const OpArg& arg) { WriteSSSE3Op(0x66, 0x3800, dest, arg); } void XEmitter::PTEST(X64Reg dest, const OpArg& arg) { WriteSSE41Op(0x66, 0x3817, dest, arg); } void XEmitter::PACKUSDW(X64Reg dest, const OpArg& arg) { WriteSSE41Op(0x66, 0x382b, dest, arg); } void XEmitter::DPPS(X64Reg dest, const OpArg& arg, u8 mask) { WriteSSE41Op(0x66, 0x3A40, dest, arg, 1); Write8(mask); } void XEmitter::PMINSB(X64Reg dest, const OpArg& arg) { WriteSSE41Op(0x66, 0x3838, dest, arg); } void XEmitter::PMINSD(X64Reg dest, const OpArg& arg) { WriteSSE41Op(0x66, 0x3839, dest, arg); } void XEmitter::PMINUW(X64Reg dest, const OpArg& arg) { WriteSSE41Op(0x66, 0x383a, dest, arg); } void XEmitter::PMINUD(X64Reg dest, const OpArg& arg) { WriteSSE41Op(0x66, 0x383b, dest, arg); } void XEmitter::PMAXSB(X64Reg dest, const OpArg& arg) { WriteSSE41Op(0x66, 0x383c, dest, arg); } void XEmitter::PMAXSD(X64Reg dest, const OpArg& arg) { WriteSSE41Op(0x66, 0x383d, dest, arg); } void XEmitter::PMAXUW(X64Reg dest, const OpArg& arg) { WriteSSE41Op(0x66, 0x383e, dest, arg); } void XEmitter::PMAXUD(X64Reg dest, const OpArg& arg) { WriteSSE41Op(0x66, 0x383f, dest, arg); } void XEmitter::PMOVSXBW(X64Reg dest, const OpArg& arg) { WriteSSE41Op(0x66, 0x3820, dest, arg); } void XEmitter::PMOVSXBD(X64Reg dest, const OpArg& arg) { WriteSSE41Op(0x66, 0x3821, dest, arg); } void XEmitter::PMOVSXBQ(X64Reg dest, const OpArg& arg) { WriteSSE41Op(0x66, 0x3822, dest, arg); } void XEmitter::PMOVSXWD(X64Reg dest, const OpArg& arg) { WriteSSE41Op(0x66, 0x3823, dest, arg); } void XEmitter::PMOVSXWQ(X64Reg dest, const OpArg& arg) { WriteSSE41Op(0x66, 0x3824, dest, arg); } void XEmitter::PMOVSXDQ(X64Reg dest, const OpArg& arg) { WriteSSE41Op(0x66, 0x3825, dest, arg); } void XEmitter::PMOVZXBW(X64Reg dest, const OpArg& arg) { WriteSSE41Op(0x66, 0x3830, dest, arg); } void XEmitter::PMOVZXBD(X64Reg dest, const OpArg& arg) { WriteSSE41Op(0x66, 0x3831, dest, arg); } void XEmitter::PMOVZXBQ(X64Reg dest, const OpArg& arg) { WriteSSE41Op(0x66, 0x3832, dest, arg); } void XEmitter::PMOVZXWD(X64Reg dest, const OpArg& arg) { WriteSSE41Op(0x66, 0x3833, dest, arg); } void XEmitter::PMOVZXWQ(X64Reg dest, const OpArg& arg) { WriteSSE41Op(0x66, 0x3834, dest, arg); } void XEmitter::PMOVZXDQ(X64Reg dest, const OpArg& arg) { WriteSSE41Op(0x66, 0x3835, dest, arg); } void XEmitter::PBLENDVB(X64Reg dest, const OpArg& arg) { WriteSSE41Op(0x66, 0x3810, dest, arg); } void XEmitter::BLENDVPS(X64Reg dest, const OpArg& arg) { WriteSSE41Op(0x66, 0x3814, dest, arg); } void XEmitter::BLENDVPD(X64Reg dest, const OpArg& arg) { WriteSSE41Op(0x66, 0x3815, dest, arg); } void XEmitter::BLENDPS(X64Reg dest, const OpArg& arg, u8 blend) { WriteSSE41Op(0x66, 0x3A0C, dest, arg, 1); Write8(blend); } void XEmitter::BLENDPD(X64Reg dest, const OpArg& arg, u8 blend) { WriteSSE41Op(0x66, 0x3A0D, dest, arg, 1); Write8(blend); } void XEmitter::ROUNDSS(X64Reg dest, const OpArg& arg, u8 mode) { WriteSSE41Op(0x66, 0x3A0A, dest, arg, 1); Write8(mode); } void XEmitter::ROUNDSD(X64Reg dest, const OpArg& arg, u8 mode) { WriteSSE41Op(0x66, 0x3A0B, dest, arg, 1); Write8(mode); } void XEmitter::ROUNDPS(X64Reg dest, const OpArg& arg, u8 mode) { WriteSSE41Op(0x66, 0x3A08, dest, arg, 1); Write8(mode); } void XEmitter::ROUNDPD(X64Reg dest, const OpArg& arg, u8 mode) { WriteSSE41Op(0x66, 0x3A09, dest, arg, 1); Write8(mode); } void XEmitter::PAND(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0xDB, dest, arg); } void XEmitter::PANDN(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0xDF, dest, arg); } void XEmitter::PXOR(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0xEF, dest, arg); } void XEmitter::POR(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0xEB, dest, arg); } void XEmitter::PADDB(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0xFC, dest, arg); } void XEmitter::PADDW(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0xFD, dest, arg); } void XEmitter::PADDD(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0xFE, dest, arg); } void XEmitter::PADDQ(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0xD4, dest, arg); } void XEmitter::PADDSB(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0xEC, dest, arg); } void XEmitter::PADDSW(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0xED, dest, arg); } void XEmitter::PADDUSB(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0xDC, dest, arg); } void XEmitter::PADDUSW(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0xDD, dest, arg); } void XEmitter::PSUBB(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0xF8, dest, arg); } void XEmitter::PSUBW(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0xF9, dest, arg); } void XEmitter::PSUBD(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0xFA, dest, arg); } void XEmitter::PSUBQ(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0xFB, dest, arg); } void XEmitter::PSUBSB(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0xE8, dest, arg); } void XEmitter::PSUBSW(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0xE9, dest, arg); } void XEmitter::PSUBUSB(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0xD8, dest, arg); } void XEmitter::PSUBUSW(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0xD9, dest, arg); } void XEmitter::PAVGB(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0xE0, dest, arg); } void XEmitter::PAVGW(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0xE3, dest, arg); } void XEmitter::PCMPEQB(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0x74, dest, arg); } void XEmitter::PCMPEQW(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0x75, dest, arg); } void XEmitter::PCMPEQD(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0x76, dest, arg); } void XEmitter::PCMPGTB(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0x64, dest, arg); } void XEmitter::PCMPGTW(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0x65, dest, arg); } void XEmitter::PCMPGTD(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0x66, dest, arg); } void XEmitter::PEXTRW(X64Reg dest, const OpArg& arg, u8 subreg) { WriteSSEOp(0x66, 0xC5, dest, arg, 1); Write8(subreg); } void XEmitter::PINSRW(X64Reg dest, const OpArg& arg, u8 subreg) { WriteSSEOp(0x66, 0xC4, dest, arg, 1); Write8(subreg); } void XEmitter::PMADDWD(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0xF5, dest, arg); } void XEmitter::PSADBW(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0xF6, dest, arg); } void XEmitter::PMAXSW(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0xEE, dest, arg); } void XEmitter::PMAXUB(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0xDE, dest, arg); } void XEmitter::PMINSW(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0xEA, dest, arg); } void XEmitter::PMINUB(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0xDA, dest, arg); } void XEmitter::PMOVMSKB(X64Reg dest, const OpArg& arg) { WriteSSEOp(0x66, 0xD7, dest, arg); } void XEmitter::PSHUFD(X64Reg regOp, const OpArg& arg, u8 shuffle) { WriteSSEOp(0x66, 0x70, regOp, arg, 1); Write8(shuffle); } void XEmitter::PSHUFLW(X64Reg regOp, const OpArg& arg, u8 shuffle) { WriteSSEOp(0xF2, 0x70, regOp, arg, 1); Write8(shuffle); } void XEmitter::PSHUFHW(X64Reg regOp, const OpArg& arg, u8 shuffle) { WriteSSEOp(0xF3, 0x70, regOp, arg, 1); Write8(shuffle); } // VEX void XEmitter::VADDSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0xF2, sseADD, regOp1, regOp2, arg); } void XEmitter::VSUBSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0xF2, sseSUB, regOp1, regOp2, arg); } void XEmitter::VMULSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0xF2, sseMUL, regOp1, regOp2, arg); } void XEmitter::VDIVSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0xF2, sseDIV, regOp1, regOp2, arg); } void XEmitter::VADDPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, sseADD, regOp1, regOp2, arg); } void XEmitter::VSUBPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, sseSUB, regOp1, regOp2, arg); } void XEmitter::VMULPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, sseMUL, regOp1, regOp2, arg); } void XEmitter::VDIVPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, sseDIV, regOp1, regOp2, arg); } void XEmitter::VSQRTSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0xF2, sseSQRT, regOp1, regOp2, arg); } void XEmitter::VSHUFPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 shuffle) { WriteAVXOp(0x66, sseSHUF, regOp1, regOp2, arg, 1); Write8(shuffle); } void XEmitter::VUNPCKLPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x14, regOp1, regOp2, arg); } void XEmitter::VUNPCKHPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x15, regOp1, regOp2, arg); } void XEmitter::VANDPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x00, sseAND, regOp1, regOp2, arg); } void XEmitter::VANDPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, sseAND, regOp1, regOp2, arg); } void XEmitter::VANDNPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x00, sseANDN, regOp1, regOp2, arg); } void XEmitter::VANDNPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, sseANDN, regOp1, regOp2, arg); } void XEmitter::VORPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x00, sseOR, regOp1, regOp2, arg); } void XEmitter::VORPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, sseOR, regOp1, regOp2, arg); } void XEmitter::VXORPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x00, sseXOR, regOp1, regOp2, arg); } void XEmitter::VXORPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, sseXOR, regOp1, regOp2, arg); } void XEmitter::VPAND(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0xDB, regOp1, regOp2, arg); } void XEmitter::VPANDN(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0xDF, regOp1, regOp2, arg); } void XEmitter::VPOR(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0xEB, regOp1, regOp2, arg); } void XEmitter::VPXOR(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0xEF, regOp1, regOp2, arg); } void XEmitter::VFMADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x3898, regOp1, regOp2, arg); } void XEmitter::VFMADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38A8, regOp1, regOp2, arg); } void XEmitter::VFMADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38B8, regOp1, regOp2, arg); } void XEmitter::VFMADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x3898, regOp1, regOp2, arg, 1); } void XEmitter::VFMADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38A8, regOp1, regOp2, arg, 1); } void XEmitter::VFMADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38B8, regOp1, regOp2, arg, 1); } void XEmitter::VFMADD132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x3899, regOp1, regOp2, arg); } void XEmitter::VFMADD213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38A9, regOp1, regOp2, arg); } void XEmitter::VFMADD231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38B9, regOp1, regOp2, arg); } void XEmitter::VFMADD132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x3899, regOp1, regOp2, arg, 1); } void XEmitter::VFMADD213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38A9, regOp1, regOp2, arg, 1); } void XEmitter::VFMADD231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38B9, regOp1, regOp2, arg, 1); } void XEmitter::VFMSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x389A, regOp1, regOp2, arg); } void XEmitter::VFMSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38AA, regOp1, regOp2, arg); } void XEmitter::VFMSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38BA, regOp1, regOp2, arg); } void XEmitter::VFMSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x389A, regOp1, regOp2, arg, 1); } void XEmitter::VFMSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38AA, regOp1, regOp2, arg, 1); } void XEmitter::VFMSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38BA, regOp1, regOp2, arg, 1); } void XEmitter::VFMSUB132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x389B, regOp1, regOp2, arg); } void XEmitter::VFMSUB213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38AB, regOp1, regOp2, arg); } void XEmitter::VFMSUB231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38BB, regOp1, regOp2, arg); } void XEmitter::VFMSUB132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x389B, regOp1, regOp2, arg, 1); } void XEmitter::VFMSUB213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38AB, regOp1, regOp2, arg, 1); } void XEmitter::VFMSUB231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38BB, regOp1, regOp2, arg, 1); } void XEmitter::VFNMADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x389C, regOp1, regOp2, arg); } void XEmitter::VFNMADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38AC, regOp1, regOp2, arg); } void XEmitter::VFNMADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38BC, regOp1, regOp2, arg); } void XEmitter::VFNMADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x389C, regOp1, regOp2, arg, 1); } void XEmitter::VFNMADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38AC, regOp1, regOp2, arg, 1); } void XEmitter::VFNMADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38BC, regOp1, regOp2, arg, 1); } void XEmitter::VFNMADD132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x389D, regOp1, regOp2, arg); } void XEmitter::VFNMADD213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38AD, regOp1, regOp2, arg); } void XEmitter::VFNMADD231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38BD, regOp1, regOp2, arg); } void XEmitter::VFNMADD132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x389D, regOp1, regOp2, arg, 1); } void XEmitter::VFNMADD213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38AD, regOp1, regOp2, arg, 1); } void XEmitter::VFNMADD231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38BD, regOp1, regOp2, arg, 1); } void XEmitter::VFNMSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x389E, regOp1, regOp2, arg); } void XEmitter::VFNMSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38AE, regOp1, regOp2, arg); } void XEmitter::VFNMSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38BE, regOp1, regOp2, arg); } void XEmitter::VFNMSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x389E, regOp1, regOp2, arg, 1); } void XEmitter::VFNMSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38AE, regOp1, regOp2, arg, 1); } void XEmitter::VFNMSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38BE, regOp1, regOp2, arg, 1); } void XEmitter::VFNMSUB132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x389F, regOp1, regOp2, arg); } void XEmitter::VFNMSUB213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38AF, regOp1, regOp2, arg); } void XEmitter::VFNMSUB231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38BF, regOp1, regOp2, arg); } void XEmitter::VFNMSUB132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x389F, regOp1, regOp2, arg, 1); } void XEmitter::VFNMSUB213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38AF, regOp1, regOp2, arg, 1); } void XEmitter::VFNMSUB231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38BF, regOp1, regOp2, arg, 1); } void XEmitter::VFMADDSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x3896, regOp1, regOp2, arg); } void XEmitter::VFMADDSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38A6, regOp1, regOp2, arg); } void XEmitter::VFMADDSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38B6, regOp1, regOp2, arg); } void XEmitter::VFMADDSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x3896, regOp1, regOp2, arg, 1); } void XEmitter::VFMADDSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38A6, regOp1, regOp2, arg, 1); } void XEmitter::VFMADDSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38B6, regOp1, regOp2, arg, 1); } void XEmitter::VFMSUBADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x3897, regOp1, regOp2, arg); } void XEmitter::VFMSUBADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38A7, regOp1, regOp2, arg); } void XEmitter::VFMSUBADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38B7, regOp1, regOp2, arg); } void XEmitter::VFMSUBADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x3897, regOp1, regOp2, arg, 1); } void XEmitter::VFMSUBADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38A7, regOp1, regOp2, arg, 1); } void XEmitter::VFMSUBADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38B7, regOp1, regOp2, arg, 1); } void XEmitter::SARX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2) { WriteBMI2Op(bits, 0xF3, 0x38F7, regOp1, regOp2, arg); } void XEmitter::SHLX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2) { WriteBMI2Op(bits, 0x66, 0x38F7, regOp1, regOp2, arg); } void XEmitter::SHRX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2) { WriteBMI2Op(bits, 0xF2, 0x38F7, regOp1, regOp2, arg); } void XEmitter::RORX(int bits, X64Reg regOp, const OpArg& arg, u8 rotate) { WriteBMI2Op(bits, 0xF2, 0x3AF0, regOp, INVALID_REG, arg, 1); Write8(rotate); } void XEmitter::PEXT(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteBMI2Op(bits, 0xF3, 0x38F5, regOp1, regOp2, arg); } void XEmitter::PDEP(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteBMI2Op(bits, 0xF2, 0x38F5, regOp1, regOp2, arg); } void XEmitter::MULX(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteBMI2Op(bits, 0xF2, 0x38F6, regOp2, regOp1, arg); } void XEmitter::BZHI(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2) { WriteBMI2Op(bits, 0x00, 0x38F5, regOp1, regOp2, arg); } void XEmitter::BLSR(int bits, X64Reg regOp, const OpArg& arg) { WriteBMI1Op(bits, 0x00, 0x38F3, (X64Reg)0x1, regOp, arg); } void XEmitter::BLSMSK(int bits, X64Reg regOp, const OpArg& arg) { WriteBMI1Op(bits, 0x00, 0x38F3, (X64Reg)0x2, regOp, arg); } void XEmitter::BLSI(int bits, X64Reg regOp, const OpArg& arg) { WriteBMI1Op(bits, 0x00, 0x38F3, (X64Reg)0x3, regOp, arg); } void XEmitter::BEXTR(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2) { WriteBMI1Op(bits, 0x00, 0x38F7, regOp1, regOp2, arg); } void XEmitter::ANDN(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteBMI1Op(bits, 0x00, 0x38F2, regOp1, regOp2, arg); } // Prefixes void XEmitter::LOCK() { Write8(0xF0); } void XEmitter::REP() { Write8(0xF3); } void XEmitter::REPNE() { Write8(0xF2); } void XEmitter::FSOverride() { Write8(0x64); } void XEmitter::GSOverride() { Write8(0x65); } void XEmitter::FWAIT() { Write8(0x9B); } // TODO: make this more generic void XEmitter::WriteFloatLoadStore(int bits, FloatOp op, FloatOp op_80b, const OpArg& arg) { int mf = 0; ASSERT_MSG(!(bits == 80 && op_80b == floatINVALID), "WriteFloatLoadStore: 80 bits not supported for this instruction"); switch (bits) { case 32: mf = 0; break; case 64: mf = 4; break; case 80: mf = 2; break; default: ASSERT_MSG(0, "WriteFloatLoadStore: invalid bits (should be 32/64/80)"); } Write8(0xd9 | mf); // x87 instructions use the reg field of the ModR/M byte as opcode: if (bits == 80) op = op_80b; arg.WriteRest(this, 0, (X64Reg)op); } void XEmitter::FLD(int bits, const OpArg& src) { WriteFloatLoadStore(bits, floatLD, floatLD80, src); } void XEmitter::FST(int bits, const OpArg& dest) { WriteFloatLoadStore(bits, floatST, floatINVALID, dest); } void XEmitter::FSTP(int bits, const OpArg& dest) { WriteFloatLoadStore(bits, floatSTP, floatSTP80, dest); } void XEmitter::FNSTSW_AX() { Write8(0xDF); Write8(0xE0); } void XEmitter::RDTSC() { Write8(0x0F); Write8(0x31); } void XCodeBlock::PoisonMemory() { // x86/64: 0xCC = breakpoint memset(region, 0xCC, region_size); } }