package minify import ( "bytes" "encoding/base64" "github.com/tdewolff/parse/v2" "github.com/tdewolff/parse/v2/strconv" ) var ( textMimeBytes = []byte("text/plain") charsetASCIIBytes = []byte("charset=us-ascii") dataBytes = []byte("data:") base64Bytes = []byte(";base64") ) // Epsilon is the closest number to zero that is not considered to be zero. var Epsilon = 0.00001 // Mediatype minifies a given mediatype by removing all whitespace. func Mediatype(b []byte) []byte { j := 0 start := 0 inString := false for i, c := range b { if !inString && parse.IsWhitespace(c) { if start != 0 { j += copy(b[j:], b[start:i]) } else { j += i } start = i + 1 } else if c == '"' { inString = !inString } } if start != 0 { j += copy(b[j:], b[start:]) return parse.ToLower(b[:j]) } return parse.ToLower(b) } // DataURI minifies a data URI and calls a minifier by the specified mediatype. Specifications: https://www.ietf.org/rfc/rfc2397.txt. func DataURI(m *M, dataURI []byte) []byte { origData := parse.Copy(dataURI) mediatype, data, err := parse.DataURI(dataURI) if err != nil { return dataURI } data, _ = m.Bytes(string(mediatype), data) base64Len := len(";base64") + base64.StdEncoding.EncodedLen(len(data)) asciiLen := len(data) for _, c := range data { if parse.DataURIEncodingTable[c] { asciiLen += 2 } if asciiLen > base64Len { break } } if len(origData) < base64Len && len(origData) < asciiLen { return origData } if base64Len < asciiLen { encoded := make([]byte, base64Len-len(";base64")) base64.StdEncoding.Encode(encoded, data) data = encoded mediatype = append(mediatype, base64Bytes...) } else { data = parse.EncodeURL(data, parse.DataURIEncodingTable) } if len("text/plain") <= len(mediatype) && parse.EqualFold(mediatype[:len("text/plain")], textMimeBytes) { mediatype = mediatype[len("text/plain"):] } for i := 0; i+len(";charset=us-ascii") <= len(mediatype); i++ { // must start with semicolon and be followed by end of mediatype or semicolon if mediatype[i] == ';' && parse.EqualFold(mediatype[i+1:i+len(";charset=us-ascii")], charsetASCIIBytes) && (i+len(";charset=us-ascii") >= len(mediatype) || mediatype[i+len(";charset=us-ascii")] == ';') { mediatype = append(mediatype[:i], mediatype[i+len(";charset=us-ascii"):]...) break } } return append(append(append(dataBytes, mediatype...), ','), data...) } // MaxInt is the maximum value of int. const MaxInt = int(^uint(0) >> 1) // MinInt is the minimum value of int. const MinInt = -MaxInt - 1 // Decimal minifies a given byte slice containing a decimal and removes superfluous characters. It differs from Number in that it does not parse exponents. // It does not parse or output exponents. prec is the number of significant digits. When prec is zero it will keep all digits. Only digits after the dot can be removed to reach the number of significant digits. Very large number may thus have more significant digits. func Decimal(num []byte, prec int) []byte { if len(num) <= 1 { return num } // omit first + and register mantissa start and end, whether it's negative and the exponent neg := false start := 0 dot := -1 end := len(num) if 0 < end && (num[0] == '+' || num[0] == '-') { if num[0] == '-' { neg = true } start++ } for i, c := range num[start:] { if c == '.' { dot = start + i break } } if dot == -1 { dot = end } // trim leading zeros but leave at least one digit for start < end-1 && num[start] == '0' { start++ } // trim trailing zeros i := end - 1 for ; dot < i; i-- { if num[i] != '0' { end = i + 1 break } } if i == dot { end = dot if start == end { num[start] = '0' return num[start : start+1] } } else if start == end-1 && num[start] == '0' { return num[start:end] } // apply precision if 0 < prec && dot <= start+prec { precEnd := start + prec + 1 // include dot if dot == start { // for numbers like .012 digit := start + 1 for digit < end && num[digit] == '0' { digit++ } precEnd = digit + prec } if precEnd < end { end = precEnd // process either an increase from a lesser significant decimal (>= 5) // or remove trailing zeros after the dot, or both i := end - 1 inc := '5' <= num[end] for ; start < i; i-- { if i == dot { // no-op } else if inc && num[i] != '9' { num[i]++ inc = false break } else if inc && i < dot { // end inc for integer num[i] = '0' } else if !inc && (i < dot || num[i] != '0') { break } } if i < dot { end = dot } else { end = i + 1 } if inc { if dot == start && end == start+1 { num[start] = '1' } else if num[start] == '9' { num[start] = '1' num[start+1] = '0' end++ } else { num[start]++ } } } } if neg { start-- num[start] = '-' } return num[start:end] } // Number minifies a given byte slice containing a number and removes superfluous characters. func Number(num []byte, prec int) []byte { if len(num) <= 1 { return num } // omit first + and register mantissa start and end, whether it's negative and the exponent neg := false start := 0 dot := -1 end := len(num) origExp := 0 if num[0] == '+' || num[0] == '-' { if num[0] == '-' { neg = true } start++ } for i, c := range num[start:] { if c == '.' { dot = start + i } else if c == 'e' || c == 'E' { end = start + i i += start + 1 if i < len(num) && num[i] == '+' { i++ } if tmpOrigExp, n := strconv.ParseInt(num[i:]); 0 < n && int64(MinInt) <= tmpOrigExp && tmpOrigExp <= int64(MaxInt) { // range checks for when int is 32 bit origExp = int(tmpOrigExp) } else { return num } break } } if dot == -1 { dot = end } // trim leading zeros but leave at least one digit for start < end-1 && num[start] == '0' { start++ } // trim trailing zeros i := end - 1 for ; dot < i; i-- { if num[i] != '0' { end = i + 1 break } } if i == dot { end = dot if start == end { num[start] = '0' return num[start : start+1] } } else if start == end-1 && num[start] == '0' { return num[start:end] } // apply precision if 0 < prec { //&& (dot <= start+prec || start+prec+1 < dot || 0 < origExp) { // don't minify 9 to 10, but do 999 to 1e3 and 99e1 to 1e3 precEnd := start + prec if dot == start { // for numbers like .012 digit := start + 1 for digit < end && num[digit] == '0' { digit++ } precEnd = digit + prec } else if dot < precEnd { // for numbers where precision will include the dot precEnd++ } if precEnd < end && (dot < end || 1 < dot-precEnd+origExp) { // do not minify 9=>10 or 99=>100 or 9e1=>1e2 (but 90), but 999=>1e3 and 99e1=>1e3 end = precEnd inc := '5' <= num[end] if dot == end { inc = end+1 < len(num) && '5' <= num[end+1] } if precEnd < dot { origExp += dot - precEnd dot = precEnd } // process either an increase from a lesser significant decimal (>= 5) // and remove trailing zeros i := end - 1 for ; start < i; i-- { if i == dot { // no-op } else if inc && num[i] != '9' { num[i]++ inc = false break } else if !inc && num[i] != '0' { break } } end = i + 1 if end < dot { origExp += dot - end dot = end } if inc { // single digit left if dot == start { num[start] = '1' dot = start + 1 } else if num[start] == '9' { num[start] = '1' origExp++ } else { num[start]++ } } } } // n is the number of significant digits // normExp would be the exponent if it were normalised (0.1 <= f < 1) n := 0 normExp := 0 if dot == start { for i = dot + 1; i < end; i++ { if num[i] != '0' { n = end - i normExp = dot - i + 1 break } } } else if dot == end { normExp = end - start for i = end - 1; start <= i; i-- { if num[i] != '0' { n = i + 1 - start end = i + 1 break } } } else { n = end - start - 1 normExp = dot - start } if origExp < 0 && (normExp < MinInt-origExp || normExp-n < MinInt-origExp) || 0 < origExp && (MaxInt-origExp < normExp || MaxInt-origExp < normExp-n) { return num // exponent overflow } normExp += origExp // intExp would be the exponent if it were an integer intExp := normExp - n lenIntExp := strconv.LenInt(int64(intExp)) lenNormExp := strconv.LenInt(int64(normExp)) // there are three cases to consider when printing the number // case 1: without decimals and with a positive exponent (large numbers: 5e4) // case 2: with decimals and with a negative exponent (small numbers with many digits: .123456e-4) // case 3: with decimals and without an exponent (around zero: 5.6) // case 4: without decimals and with a negative exponent (small numbers: 123456e-9) if n <= normExp { // case 1: print number with positive exponent if dot < end { // remove dot, either from the front or copy the smallest part if dot == start { start = end - n } else if dot-start < end-dot-1 { copy(num[start+1:], num[start:dot]) start++ } else { copy(num[dot:], num[dot+1:end]) end-- } } if n+3 <= normExp { num[end] = 'e' end++ for i := end + lenIntExp - 1; end <= i; i-- { num[i] = byte(intExp%10) + '0' intExp /= 10 } end += lenIntExp } else if n+2 == normExp { num[end] = '0' num[end+1] = '0' end += 2 } else if n+1 == normExp { num[end] = '0' end++ } } else if normExp < -3 && lenNormExp < lenIntExp && dot < end { // case 2: print normalized number (0.1 <= f < 1) zeroes := -normExp + origExp if 0 < zeroes { copy(num[start+1:], num[start+1+zeroes:end]) end -= zeroes } else if zeroes < 0 { copy(num[start+1:], num[start:dot]) num[start] = '.' } num[end] = 'e' num[end+1] = '-' end += 2 for i := end + lenNormExp - 1; end <= i; i-- { num[i] = -byte(normExp%10) + '0' normExp /= 10 } end += lenNormExp } else if -lenIntExp-1 <= normExp { // case 3: print number without exponent zeroes := -normExp if 0 < zeroes { // dot placed at the front and negative exponent, adding zeroes newDot := end - n - zeroes - 1 if newDot != dot { d := start - newDot if 0 < d { if dot < end { // copy original digits after the dot towards the end copy(num[dot+1+d:], num[dot+1:end]) if start < dot { // copy original digits before the dot towards the end copy(num[start+d+1:], num[start:dot]) } } else if start < dot { // copy original digits before the dot towards the end copy(num[start+d:], num[start:dot]) } newDot = start end += d } else { start += -d } num[newDot] = '.' for i := 0; i < zeroes; i++ { num[newDot+1+i] = '0' } } } else { // dot placed in the middle of the number if dot == start { // when there are zeroes after the dot dot = end - n - 1 start = dot } else if end <= dot { // when input has no dot in it dot = end end++ } newDot := start + normExp // move digits between dot and newDot towards the end if dot < newDot { copy(num[dot:], num[dot+1:newDot+1]) } else if newDot < dot { copy(num[newDot+1:], num[newDot:dot]) } num[newDot] = '.' } } else { // case 4: print number with negative exponent // find new end, considering moving numbers to the front, removing the dot and increasing the length of the exponent newEnd := end if dot == start { newEnd = start + n } else { newEnd-- } newEnd += 2 + lenIntExp exp := intExp lenExp := lenIntExp if newEnd < len(num) { // it saves space to convert the decimal to an integer and decrease the exponent if dot < end { if dot == start { copy(num[start:], num[end-n:end]) end = start + n } else { copy(num[dot:], num[dot+1:end]) end-- } } } else { // it does not save space and will panic, so we revert to the original representation exp = origExp lenExp = 1 if origExp <= -10 || 10 <= origExp { lenExp = strconv.LenInt(int64(origExp)) } } num[end] = 'e' num[end+1] = '-' end += 2 for i := end + lenExp - 1; end <= i; i-- { num[i] = -byte(exp%10) + '0' exp /= 10 } end += lenExp } if neg { start-- num[start] = '-' } return num[start:end] } func UpdateErrorPosition(err error, input *parse.Input, offset int) error { if perr, ok := err.(*parse.Error); ok { r := bytes.NewBuffer(input.Bytes()) line, column, _ := parse.Position(r, offset) perr.Line += line - 1 perr.Column += column - 1 return perr } return err }