package dns import ( "crypto" "crypto/ecdsa" "crypto/ed25519" "crypto/rsa" "math/big" "strconv" ) const format = "Private-key-format: v1.3\n" var bigIntOne = big.NewInt(1) // PrivateKeyString converts a PrivateKey to a string. This string has the same // format as the private-key-file of BIND9 (Private-key-format: v1.3). // It needs some info from the key (the algorithm), so its a method of the DNSKEY. // It supports *rsa.PrivateKey, *ecdsa.PrivateKey and ed25519.PrivateKey. func (r *DNSKEY) PrivateKeyString(p crypto.PrivateKey) string { algorithm := strconv.Itoa(int(r.Algorithm)) algorithm += " (" + AlgorithmToString[r.Algorithm] + ")" switch p := p.(type) { case *rsa.PrivateKey: modulus := toBase64(p.PublicKey.N.Bytes()) e := big.NewInt(int64(p.PublicKey.E)) publicExponent := toBase64(e.Bytes()) privateExponent := toBase64(p.D.Bytes()) prime1 := toBase64(p.Primes[0].Bytes()) prime2 := toBase64(p.Primes[1].Bytes()) // Calculate Exponent1/2 and Coefficient as per: http://en.wikipedia.org/wiki/RSA#Using_the_Chinese_remainder_algorithm // and from: http://code.google.com/p/go/issues/detail?id=987 p1 := new(big.Int).Sub(p.Primes[0], bigIntOne) q1 := new(big.Int).Sub(p.Primes[1], bigIntOne) exp1 := new(big.Int).Mod(p.D, p1) exp2 := new(big.Int).Mod(p.D, q1) coeff := new(big.Int).ModInverse(p.Primes[1], p.Primes[0]) exponent1 := toBase64(exp1.Bytes()) exponent2 := toBase64(exp2.Bytes()) coefficient := toBase64(coeff.Bytes()) return format + "Algorithm: " + algorithm + "\n" + "Modulus: " + modulus + "\n" + "PublicExponent: " + publicExponent + "\n" + "PrivateExponent: " + privateExponent + "\n" + "Prime1: " + prime1 + "\n" + "Prime2: " + prime2 + "\n" + "Exponent1: " + exponent1 + "\n" + "Exponent2: " + exponent2 + "\n" + "Coefficient: " + coefficient + "\n" case *ecdsa.PrivateKey: var intlen int switch r.Algorithm { case ECDSAP256SHA256: intlen = 32 case ECDSAP384SHA384: intlen = 48 } private := toBase64(intToBytes(p.D, intlen)) return format + "Algorithm: " + algorithm + "\n" + "PrivateKey: " + private + "\n" case ed25519.PrivateKey: private := toBase64(p.Seed()) return format + "Algorithm: " + algorithm + "\n" + "PrivateKey: " + private + "\n" default: return "" } }