/* * Copyright (c) 2018 naehrwert * * Copyright (c) 2018-2020 CTCaer * Copyright (c) 2019-2020 shchmue * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include <string.h> #include "config.h" #include <gfx/di.h> #include <gfx_utils.h> #include "gfx/tui.h" #include <libs/fatfs/ff.h> #include <mem/heap.h> #include <mem/minerva.h> #include <power/bq24193.h> #include <power/max17050.h> #include <power/max77620.h> #include <rtc/max77620-rtc.h> #include <soc/bpmp.h> #include <soc/hw_init.h> #include "storage/emummc.h" #include "storage/nx_emmc.h" #include <storage/nx_sd.h> #include <storage/sdmmc.h> #include <utils/btn.h> #include <utils/dirlist.h> #include <utils/ini.h> #include <utils/sprintf.h> #include <utils/util.h> #include "keys/keys.h" hekate_config h_cfg; boot_cfg_t __attribute__((section ("._boot_cfg"))) b_cfg; volatile nyx_storage_t *nyx_str = (nyx_storage_t *)NYX_STORAGE_ADDR; // This is a safe and unused DRAM region for our payloads. #define RELOC_META_OFF 0x7C #define PATCHED_RELOC_SZ 0x94 #define PATCHED_RELOC_STACK 0x40007000 #define PATCHED_RELOC_ENTRY 0x40010000 #define EXT_PAYLOAD_ADDR 0xC0000000 #define RCM_PAYLOAD_ADDR (EXT_PAYLOAD_ADDR + ALIGN(PATCHED_RELOC_SZ, 0x10)) #define COREBOOT_END_ADDR 0xD0000000 #define CBFS_DRAM_EN_ADDR 0x4003e000 #define CBFS_DRAM_MAGIC 0x4452414D // "DRAM" static void *coreboot_addr; void reloc_patcher(u32 payload_dst, u32 payload_src, u32 payload_size) { memcpy((u8 *)payload_src, (u8 *)IPL_LOAD_ADDR, PATCHED_RELOC_SZ); volatile reloc_meta_t *relocator = (reloc_meta_t *)(payload_src + RELOC_META_OFF); relocator->start = payload_dst - ALIGN(PATCHED_RELOC_SZ, 0x10); relocator->stack = PATCHED_RELOC_STACK; relocator->end = payload_dst + payload_size; relocator->ep = payload_dst; if (payload_size == 0x7000) { memcpy((u8 *)(payload_src + ALIGN(PATCHED_RELOC_SZ, 0x10)), coreboot_addr, 0x7000); //Bootblock *(vu32 *)CBFS_DRAM_EN_ADDR = CBFS_DRAM_MAGIC; } } int launch_payload(char *path) { gfx_clear_grey(0x1B); gfx_con_setpos(0, 0); if (!path) return 1; if (sd_mount()) { FIL fp; if (f_open(&fp, path, FA_READ)) { EPRINTFARGS("Payload file is missing!\n(%s)", path); sd_unmount(); return 1; } // Read and copy the payload to our chosen address void *buf; u32 size = f_size(&fp); if (size < 0x30000) buf = (void *)RCM_PAYLOAD_ADDR; else { coreboot_addr = (void *)(COREBOOT_END_ADDR - size); buf = coreboot_addr; } if (f_read(&fp, buf, size, NULL)) { f_close(&fp); sd_unmount(); return 1; } f_close(&fp); sd_unmount(); if (size < 0x30000) { reloc_patcher(PATCHED_RELOC_ENTRY, EXT_PAYLOAD_ADDR, ALIGN(size, 0x10)); hw_reinit_workaround(false, byte_swap_32(*(u32 *)(buf + size - sizeof(u32)))); } else { reloc_patcher(PATCHED_RELOC_ENTRY, EXT_PAYLOAD_ADDR, 0x7000); hw_reinit_workaround(true, 0); } // Some cards (Sandisk U1), do not like a fast power cycle. Wait min 100ms. sdmmc_storage_init_wait_sd(); void (*ext_payload_ptr)() = (void *)EXT_PAYLOAD_ADDR; // Launch our payload. (*ext_payload_ptr)(); } return 1; } void launch_tools() { u8 max_entries = 61; char *filelist = NULL; char *file_sec = NULL; char *dir = NULL; ment_t *ments = (ment_t *)malloc(sizeof(ment_t) * (max_entries + 3)); gfx_clear_grey(0x1B); gfx_con_setpos(0, 0); if (sd_mount()) { dir = (char *)malloc(256); memcpy(dir, "sd:/bootloader/payloads", 24); filelist = dirlist(dir, NULL, false, false); u32 i = 0; u32 i_off = 2; if (filelist) { // Build configuration menu. u32 color_idx = 0; ments[0].type = MENT_BACK; ments[0].caption = "Back"; ments[0].color = colors[(color_idx++) % 6]; ments[1].type = MENT_CHGLINE; ments[1].color = colors[(color_idx++) % 6]; if (!f_stat("sd:/atmosphere/reboot_payload.bin", NULL)) { ments[i_off].type = INI_CHOICE; ments[i_off].caption = "reboot_payload.bin"; ments[i_off].color = colors[(color_idx++) % 6]; ments[i_off].data = "sd:/atmosphere/reboot_payload.bin"; i_off++; } if (!f_stat("sd:/ReiNX.bin", NULL)) { ments[i_off].type = INI_CHOICE; ments[i_off].caption = "ReiNX.bin"; ments[i_off].color = colors[(color_idx++) % 6]; ments[i_off].data = "sd:/ReiNX.bin"; i_off++; } while (true) { if (i > max_entries || !filelist[i * 256]) break; ments[i + i_off].type = INI_CHOICE; ments[i + i_off].caption = &filelist[i * 256]; ments[i + i_off].color = colors[(color_idx++) % 6]; ments[i + i_off].data = &filelist[i * 256]; i++; } } if (i > 0) { memset(&ments[i + i_off], 0, sizeof(ment_t)); menu_t menu = { ments, "Choose a file to launch", 0, 0 }; file_sec = (char *)tui_do_menu(&menu); if (!file_sec) { free(ments); free(dir); free(filelist); sd_unmount(); return; } } else EPRINTF("No payloads or modules found."); free(ments); free(filelist); } else { free(ments); goto out; } if (file_sec) { if (memcmp("sd:/", file_sec, 4) != 0) { memcpy(dir + strlen(dir), "/", 2); memcpy(dir + strlen(dir), file_sec, strlen(file_sec) + 1); } else memcpy(dir, file_sec, strlen(file_sec) + 1); if (launch_payload(dir)) { EPRINTF("Failed to launch payload."); free(dir); } } out: sd_unmount(); free(dir); btn_wait(); } void dump_sysnand() { h_cfg.emummc_force_disable = true; emu_cfg.enabled = false; b_cfg.extra_cfg &= ~EXTRA_CFG_DUMP_EMUMMC; dump_keys(); } void dump_emunand() { if (h_cfg.emummc_force_disable) return; emu_cfg.enabled = true; b_cfg.extra_cfg |= EXTRA_CFG_DUMP_EMUMMC; dump_keys(); } ment_t ment_top[] = { MDEF_HANDLER("Dump from SysNAND | Key generation: unk", dump_sysnand, COLOR_RED), MDEF_HANDLER("Dump from EmuNAND | Key generation: unk", dump_emunand, COLOR_ORANGE), MDEF_CAPTION("---------------", COLOR_YELLOW), MDEF_HANDLER("Payloads...", launch_tools, COLOR_GREEN), MDEF_CAPTION("---------------", COLOR_BLUE), MDEF_HANDLER("Reboot (Normal)", reboot_normal, COLOR_VIOLET), MDEF_HANDLER("Reboot (RCM)", reboot_rcm, COLOR_RED), MDEF_HANDLER("Power off", power_off, COLOR_ORANGE), MDEF_END() }; menu_t menu_top = { ment_top, NULL, 0, 0 }; void _get_key_generations(char *sysnand_label, char *emunand_label) { sdmmc_t sdmmc; sdmmc_storage_t storage; sdmmc_storage_init_mmc(&storage, &sdmmc, SDMMC_BUS_WIDTH_8, SDHCI_TIMING_MMC_HS400); u8 *pkg1 = (u8 *)malloc(PKG1_MAX_SIZE); sdmmc_storage_set_mmc_partition(&storage, EMMC_BOOT0); sdmmc_storage_read(&storage, PKG1_OFFSET / NX_EMMC_BLOCKSIZE, PKG1_MAX_SIZE / NX_EMMC_BLOCKSIZE, pkg1); sdmmc_storage_end(&storage); u32 pk1_offset = h_cfg.t210b01 ? sizeof(bl_hdr_t210b01_t) : 0; // Skip T210B01 OEM header. const pkg1_id_t *pkg1_id = pkg1_identify(pkg1 + pk1_offset); sprintf(sysnand_label + 36, "% 3d", pkg1_id->kb); ment_top[0].caption = sysnand_label; if (h_cfg.emummc_force_disable) { free(pkg1); return; } emummc_storage_init_mmc(&storage, &sdmmc); memset(pkg1, 0, PKG1_MAX_SIZE); emummc_storage_set_mmc_partition(&storage, EMMC_BOOT0); emummc_storage_read(&storage, PKG1_OFFSET / NX_EMMC_BLOCKSIZE, PKG1_MAX_SIZE / NX_EMMC_BLOCKSIZE, pkg1); emummc_storage_end(&storage); pkg1_id = pkg1_identify(pkg1 + pk1_offset); sprintf(emunand_label + 36, "% 3d", pkg1_id->kb); free(pkg1); ment_top[1].caption = emunand_label; } extern void pivot_stack(u32 stack_top); void ipl_main() { // Do initial HW configuration. This is compatible with consecutive reruns without a reset. hw_init(); // Pivot the stack so we have enough space. pivot_stack(IPL_STACK_TOP); // Tegra/Horizon configuration goes to 0x80000000+, package2 goes to 0xA9800000, we place our heap in between. heap_init(IPL_HEAP_START); #ifdef DEBUG_UART_PORT uart_send(DEBUG_UART_PORT, (u8 *)"hekate: Hello!\r\n", 16); uart_wait_idle(DEBUG_UART_PORT, UART_TX_IDLE); #endif // Set bootloader's default configuration. set_default_configuration(); // Mount SD Card. h_cfg.errors |= !sd_mount() ? ERR_SD_BOOT_EN : 0; // Train DRAM and switch to max frequency. if (minerva_init()) //!TODO: Add Tegra210B01 support to minerva. h_cfg.errors |= ERR_LIBSYS_MTC; minerva_change_freq(FREQ_1600); display_init(); u32 *fb = display_init_framebuffer_pitch(); gfx_init_ctxt(fb, 720, 1280, 720); gfx_con_init(); display_backlight_pwm_init(); // Overclock BPMP. bpmp_clk_rate_set(BPMP_CLK_DEFAULT_BOOST); emummc_load_cfg(); // Ignore whether emummc is enabled. h_cfg.emummc_force_disable = emu_cfg.sector == 0 && !emu_cfg.path; emu_cfg.enabled = !h_cfg.emummc_force_disable; if (b_cfg.boot_cfg & BOOT_CFG_SEPT_RUN) { if (!(b_cfg.extra_cfg & EXTRA_CFG_DUMP_EMUMMC)) { h_cfg.emummc_force_disable = true; emu_cfg.enabled = false; } dump_keys(); } // Grey out emummc option if not present. if (h_cfg.emummc_force_disable) { ment_top[1].type = MENT_CAPTION; ment_top[1].color = 0xFF555555; ment_top[1].handler = NULL; } // Grey out reboot to RCM option if on Mariko or patched console. if (h_cfg.t210b01 || h_cfg.rcm_patched) { ment_top[6].type = MENT_CAPTION; ment_top[6].color = 0xFF555555; ment_top[6].handler = NULL; } if (h_cfg.rcm_patched) { ment_top[5].handler = reboot_full; } // Update key generations listed in menu. _get_key_generations((char *)ment_top[0].caption, (char *)ment_top[1].caption); while (true) tui_do_menu(&menu_top); // Halt BPMP if we managed to get out of execution. while (true) bpmp_halt(); }