/* * Copyright (c) 2019-2022 shchmue * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include "keys.h" #include "es_crypto.h" #include "fs_crypto.h" #include "nfc_crypto.h" #include "ssl_crypto.h" #include "../config.h" #include <display/di.h> #include "../frontend/gui.h" #include <gfx_utils.h> #include "../gfx/tui.h" #include "../hos/hos.h" #include <libs/fatfs/ff.h> #include <libs/nx_savedata/header.h> #include <libs/nx_savedata/save.h> #include <mem/heap.h> #include <mem/minerva.h> #include <mem/sdram.h> #include <sec/se.h> #include <sec/se_t210.h> #include <soc/fuse.h> #include <soc/t210.h> #include "../storage/emummc.h" #include "../storage/nx_emmc.h" #include "../storage/nx_emmc_bis.h" #include <storage/nx_sd.h> #include <storage/sdmmc.h> #include <utils/btn.h> #include <utils/list.h> #include <utils/sprintf.h> #include <utils/util.h> #include "key_sources.inl" #include <string.h> extern hekate_config h_cfg; static u32 _key_count = 0, _titlekey_count = 0; static u32 start_time, end_time; u32 color_idx = 0; static void _save_key(const char *name, const void *data, u32 len, char *outbuf) { if (!key_exists(data)) return; u32 pos = strlen(outbuf); pos += s_printf(&outbuf[pos], "%s = ", name); for (u32 i = 0; i < len; i++) pos += s_printf(&outbuf[pos], "%02x", *(u8*)(data + i)); s_printf(&outbuf[pos], "\n"); _key_count++; } static void _save_key_family(const char *name, const void *data, u32 start_key, u32 num_keys, u32 len, char *outbuf) { char *temp_name = calloc(1, 0x40); for (u32 i = 0; i < num_keys; i++) { s_printf(temp_name, "%s_%02x", name, i + start_key); _save_key(temp_name, data + i * len, len, outbuf); } free(temp_name); } static void _derive_master_keys_mariko(key_storage_t *keys, bool is_dev) { minerva_periodic_training(); // Relies on the SBK being properly set in slot 14 se_aes_crypt_block_ecb(KS_SECURE_BOOT, DECRYPT, keys->device_key_4x, device_master_key_source_kek_source); // Derive all master keys based on Mariko KEK for (u32 i = KB_FIRMWARE_VERSION_600; i < ARRAY_SIZE(mariko_master_kek_sources) + KB_FIRMWARE_VERSION_600; i++) { // Relies on the Mariko KEK being properly set in slot 12 u32 kek_source_index = i - KB_FIRMWARE_VERSION_600; const void *kek_source = is_dev ? &mariko_master_kek_sources_dev[kek_source_index] : &mariko_master_kek_sources[kek_source_index]; se_aes_crypt_block_ecb(KS_MARIKO_KEK, DECRYPT, keys->master_kek[i], kek_source); load_aes_key(KS_AES_ECB, keys->master_key[i], keys->master_kek[i], master_key_source); } } static void _derive_master_keys_from_latest_key(key_storage_t *keys, bool is_dev) { minerva_periodic_training(); if (!h_cfg.t210b01) { u32 tsec_root_key_slot = is_dev ? KS_TSEC_ROOT_DEV : KS_TSEC_ROOT; // Derive all master keys based on current root key for (u32 i = KB_FIRMWARE_VERSION_810 - KB_FIRMWARE_VERSION_620; i < ARRAY_SIZE(master_kek_sources); i++) { u32 key_index = i + KB_FIRMWARE_VERSION_620; se_aes_crypt_block_ecb(tsec_root_key_slot, DECRYPT, keys->master_kek[key_index], master_kek_sources[i]); load_aes_key(KS_AES_ECB, keys->master_key[key_index], keys->master_kek[key_index], master_key_source); } } minerva_periodic_training(); // Derive all lower master keys for (u32 i = KB_FIRMWARE_VERSION_MAX; i > 0; i--) { load_aes_key(KS_AES_ECB, keys->master_key[i - 1], keys->master_key[i], is_dev ? master_key_vectors_dev[i] : master_key_vectors[i]); } load_aes_key(KS_AES_ECB, keys->temp_key, keys->master_key[0], is_dev ? master_key_vectors_dev[0] : master_key_vectors[0]); if (key_exists(keys->temp_key)) { EPRINTFARGS("Unable to derive master keys for %s.", is_dev ? "dev" : "prod"); memset(keys->master_key, 0, sizeof(keys->master_key)); } } static void _derive_keyblob_keys(key_storage_t *keys) { minerva_periodic_training(); encrypted_keyblob_t *keyblob_buffer = (encrypted_keyblob_t *)calloc(KB_FIRMWARE_VERSION_600 + 1, sizeof(encrypted_keyblob_t)); u32 keyblob_mac[SE_AES_CMAC_DIGEST_SIZE / 4] = {0}; bool have_keyblobs = true; if (FUSE(FUSE_PRIVATE_KEY0) != 0xFFFFFFFF) { keys->secure_boot_key[0] = FUSE(FUSE_PRIVATE_KEY0); keys->secure_boot_key[1] = FUSE(FUSE_PRIVATE_KEY1); keys->secure_boot_key[2] = FUSE(FUSE_PRIVATE_KEY2); keys->secure_boot_key[3] = FUSE(FUSE_PRIVATE_KEY3); } if (!emmc_storage.initialized) { have_keyblobs = false; } else if (!emummc_storage_read(KEYBLOB_OFFSET / NX_EMMC_BLOCKSIZE, KB_FIRMWARE_VERSION_600 + 1, keyblob_buffer)) { EPRINTF("Unable to read keyblobs."); have_keyblobs = false; } else { have_keyblobs = true; } encrypted_keyblob_t *current_keyblob = keyblob_buffer; for (u32 i = 0; i < ARRAY_SIZE(keyblob_key_sources); i++, current_keyblob++) { minerva_periodic_training(); se_aes_crypt_block_ecb(KS_TSEC, DECRYPT, keys->keyblob_key[i], keyblob_key_sources[i]); se_aes_crypt_block_ecb(KS_SECURE_BOOT, DECRYPT, keys->keyblob_key[i], keys->keyblob_key[i]); load_aes_key(KS_AES_ECB, keys->keyblob_mac_key[i], keys->keyblob_key[i], keyblob_mac_key_source); if (i == 0) { se_aes_crypt_block_ecb(KS_AES_ECB, DECRYPT, keys->device_key, per_console_key_source); se_aes_crypt_block_ecb(KS_AES_ECB, DECRYPT, keys->device_key_4x, device_master_key_source_kek_source); } if (!have_keyblobs) { continue; } // Verify keyblob is not corrupt se_aes_key_set(KS_AES_CMAC, keys->keyblob_mac_key[i], sizeof(keys->keyblob_mac_key[i])); se_aes_cmac(KS_AES_CMAC, keyblob_mac, sizeof(keyblob_mac), current_keyblob->iv, sizeof(current_keyblob->iv) + sizeof(keyblob_t)); if (memcmp(current_keyblob->cmac, keyblob_mac, sizeof(keyblob_mac)) != 0) { EPRINTFARGS("Keyblob %x corrupt.", i); continue; } // Decrypt keyblobs se_aes_key_set(KS_AES_CTR, keys->keyblob_key[i], sizeof(keys->keyblob_key[i])); se_aes_crypt_ctr(KS_AES_CTR, &keys->keyblob[i], sizeof(keyblob_t), ¤t_keyblob->key_data, sizeof(keyblob_t), current_keyblob->iv); memcpy(keys->package1_key[i], keys->keyblob[i].package1_key, sizeof(keys->package1_key[i])); memcpy(keys->master_kek[i], keys->keyblob[i].master_kek, sizeof(keys->master_kek[i])); if (!key_exists(keys->master_key[i])) { load_aes_key(KS_AES_ECB, keys->master_key[i], keys->master_kek[i], master_key_source); } } free(keyblob_buffer); } static void _derive_master_keys(key_storage_t *prod_keys, key_storage_t *dev_keys, bool is_dev) { key_storage_t *keys = is_dev ? dev_keys : prod_keys; if (h_cfg.t210b01) { _derive_master_keys_mariko(keys, is_dev); _derive_master_keys_from_latest_key(keys, is_dev); } else { if (run_ams_keygen()) { EPRINTF("Failed to run keygen."); return; } u8 *aes_keys = (u8 *)calloc(1, SZ_4K); se_get_aes_keys(aes_keys + SZ_2K, aes_keys, SE_KEY_128_SIZE); memcpy(&dev_keys->tsec_root_key, aes_keys + KS_TSEC_ROOT_DEV * SE_KEY_128_SIZE, SE_KEY_128_SIZE); memcpy(&dev_keys->tsec_key, aes_keys + KS_TSEC * SE_KEY_128_SIZE, SE_KEY_128_SIZE); memcpy(&prod_keys->tsec_key, aes_keys + KS_TSEC * SE_KEY_128_SIZE, SE_KEY_128_SIZE); memcpy(&prod_keys->tsec_root_key, aes_keys + KS_TSEC_ROOT * SE_KEY_128_SIZE, SE_KEY_128_SIZE); if (FUSE(FUSE_PRIVATE_KEY0) != 0xFFFFFFFF) { memcpy(&dev_keys->secure_boot_key, aes_keys + KS_SECURE_BOOT * SE_KEY_128_SIZE, SE_KEY_128_SIZE); memcpy(&prod_keys->secure_boot_key, aes_keys + KS_SECURE_BOOT * SE_KEY_128_SIZE, SE_KEY_128_SIZE); } free(aes_keys); _derive_master_keys_from_latest_key(prod_keys, false); _derive_master_keys_from_latest_key(dev_keys, true); _derive_keyblob_keys(keys); } } static void _derive_bis_keys(key_storage_t *keys) { minerva_periodic_training(); u32 generation = fuse_read_odm_keygen_rev(); fs_derive_bis_keys(keys, keys->bis_key, generation); } static void _derive_misc_keys(key_storage_t *keys) { minerva_periodic_training(); fs_derive_save_mac_key(keys, keys->save_mac_key); } static void _derive_non_unique_keys(key_storage_t *keys, bool is_dev) { minerva_periodic_training(); fs_derive_header_key(keys, keys->header_key); es_derive_rsa_kek_original(keys, keys->eticket_rsa_kek, is_dev); ssl_derive_rsa_kek_original(keys, keys->ssl_rsa_kek, is_dev); for (u32 generation = 0; generation < ARRAY_SIZE(keys->master_key); generation++) { minerva_periodic_training(); if (!key_exists(keys->master_key[generation])) continue; for (u32 source_type = 0; source_type < ARRAY_SIZE(key_area_key_sources); source_type++) { fs_derive_key_area_key(keys, keys->key_area_key[source_type][generation], source_type, generation); } load_aes_key(KS_AES_ECB, keys->package2_key[generation], keys->master_key[generation], package2_key_source); load_aes_key(KS_AES_ECB, keys->titlekek[generation], keys->master_key[generation], titlekek_source); } } // Returns true when terminator is found static bool _count_ticket_records(u32 buf_size, titlekey_buffer_t *titlekey_buffer, u32 *tkey_count) { ticket_record_t *curr_ticket_record = (ticket_record_t *)titlekey_buffer->read_buffer; for (u32 i = 0; i < buf_size; i += sizeof(ticket_record_t), curr_ticket_record++) { if (curr_ticket_record->rights_id[0] == 0xFF) return true; (*tkey_count)++; } return false; } static bool _get_titlekeys_from_save(u32 buf_size, const u8 *save_mac_key, titlekey_buffer_t *titlekey_buffer, eticket_rsa_keypair_t *rsa_keypair) { FIL fp; u64 br = buf_size; u64 offset = 0; u32 file_tkey_count = 0; u32 save_x = gfx_con.x, save_y = gfx_con.y; bool is_personalized = rsa_keypair != NULL; const char ticket_bin_path[32] = "/ticket.bin"; const char ticket_list_bin_path[32] = "/ticket_list.bin"; char titlekey_save_path[32] = "bis:/save/80000000000000E1"; save_data_file_ctx_t ticket_file; if (is_personalized) { titlekey_save_path[25] = '2'; gfx_printf("\n%kPersonalized... ", colors[color_idx % 6]); } else { gfx_printf("\n%kCommon... ", colors[color_idx % 6]); } if (f_open(&fp, titlekey_save_path, FA_READ | FA_OPEN_EXISTING)) { EPRINTF("Unable to open e1 save. Skipping."); return false; } save_ctx_t *save_ctx = calloc(1, sizeof(save_ctx_t)); save_init(save_ctx, &fp, save_mac_key, 0); bool save_process_success = save_process(save_ctx); TPRINTF("\n Save process..."); if (!save_process_success) { EPRINTF("Failed to process es save."); f_close(&fp); save_free_contexts(save_ctx); free(save_ctx); return false; } if (!save_open_file(save_ctx, &ticket_file, ticket_list_bin_path, OPEN_MODE_READ)) { EPRINTF("Unable to locate ticket_list.bin in save."); f_close(&fp); save_free_contexts(save_ctx); free(save_ctx); return false; } // Read ticket list to get ticket count while (offset < ticket_file.size) { minerva_periodic_training(); if (!save_data_file_read(&ticket_file, &br, offset, titlekey_buffer->read_buffer, buf_size) || titlekey_buffer->read_buffer[0] == 0 || br != buf_size || _count_ticket_records(buf_size, titlekey_buffer, &file_tkey_count) ) { break; } offset += br; } TPRINTF(" Count titlekeys..."); if (!save_open_file(save_ctx, &ticket_file, ticket_bin_path, OPEN_MODE_READ)) { EPRINTF("Unable to locate ticket.bin in save."); f_close(&fp); save_free_contexts(save_ctx); free(save_ctx); return false; } if (is_personalized) se_rsa_key_set(0, rsa_keypair->modulus, sizeof(rsa_keypair->modulus), rsa_keypair->private_exponent, sizeof(rsa_keypair->private_exponent)); offset = 0; u32 pct = 0, last_pct = 0, remaining = file_tkey_count; while (offset < ticket_file.size && remaining) { if (!save_data_file_read(&ticket_file, &br, offset, titlekey_buffer->read_buffer, buf_size) || titlekey_buffer->read_buffer[0] == 0 || br != buf_size) break; offset += br; es_decode_tickets(buf_size, titlekey_buffer, remaining, file_tkey_count, &_titlekey_count, save_x, save_y, &pct, &last_pct, is_personalized); remaining -= MIN(buf_size / sizeof(ticket_t), remaining); } tui_pbar(save_x, save_y, 100, COLOR_GREEN, 0xFF155500); f_close(&fp); save_free_contexts(save_ctx); free(save_ctx); gfx_con_setpos(0, save_y); if (is_personalized) { TPRINTFARGS("\n%kPersonalized... ", colors[(color_idx++) % 6]); } else { TPRINTFARGS("\n%kCommon... ", colors[(color_idx++) % 6]); } gfx_printf("\n\n\n"); return true; } static bool _derive_sd_seed(key_storage_t *keys) { FIL fp; u32 read_bytes = 0; char *private_path = malloc(200); strcpy(private_path, "sd:/"); if (emu_cfg.nintendo_path && (emu_cfg.enabled || !h_cfg.emummc_force_disable)) { strcat(private_path, emu_cfg.nintendo_path); } else { strcat(private_path, "Nintendo"); } strcat(private_path, "/Contents/private"); FRESULT fr = f_open(&fp, private_path, FA_READ | FA_OPEN_EXISTING); free(private_path); if (fr) { EPRINTF("Unable to open SD seed vector. Skipping."); return false; } // Get sd seed verification vector if (f_read(&fp, keys->temp_key, SE_KEY_128_SIZE, &read_bytes) || read_bytes != SE_KEY_128_SIZE) { EPRINTF("Unable to read SD seed vector. Skipping."); f_close(&fp); return false; } f_close(&fp); // This file is small enough that parsing the savedata properly is slower if (f_open(&fp, "bis:/save/8000000000000043", FA_READ | FA_OPEN_EXISTING)) { EPRINTF("Unable to open ns_appman save.\nSkipping SD seed."); return false; } u8 read_buf[0x20] __attribute__((aligned(4))) = {0}; // Skip the two header blocks and only check the first bytes of each block // File contents are always block-aligned for (u32 i = SAVE_BLOCK_SIZE_DEFAULT * 2; i < f_size(&fp); i += SAVE_BLOCK_SIZE_DEFAULT) { if (f_lseek(&fp, i) || f_read(&fp, read_buf, 0x20, &read_bytes) || read_bytes != 0x20) break; if (memcmp(keys->temp_key, read_buf, sizeof(keys->temp_key)) == 0) { memcpy(keys->sd_seed, read_buf + 0x10, sizeof(keys->sd_seed)); break; } } f_close(&fp); TPRINTFARGS("%kSD Seed... ", colors[(color_idx++) % 6]); return true; } static bool _derive_titlekeys(key_storage_t *keys, titlekey_buffer_t *titlekey_buffer, bool is_dev) { if (!key_exists(&keys->eticket_rsa_keypair)) { return false; } gfx_printf("%kTitlekeys... \n", colors[(color_idx++) % 6]); const u32 buf_size = SAVE_BLOCK_SIZE_DEFAULT; _get_titlekeys_from_save(buf_size, keys->save_mac_key, titlekey_buffer, NULL); _get_titlekeys_from_save(buf_size, keys->save_mac_key, titlekey_buffer, &keys->eticket_rsa_keypair); gfx_printf("\n%k Found %d titlekeys.\n\n", colors[(color_idx++) % 6], _titlekey_count); return true; } static void _derive_emmc_keys(key_storage_t *keys, titlekey_buffer_t *titlekey_buffer, bool is_dev) { // Set BIS keys. // PRODINFO/PRODINFOF se_aes_key_set(KS_BIS_00_CRYPT, keys->bis_key[0] + 0x00, SE_KEY_128_SIZE); se_aes_key_set(KS_BIS_00_TWEAK, keys->bis_key[0] + 0x10, SE_KEY_128_SIZE); // SAFE se_aes_key_set(KS_BIS_01_CRYPT, keys->bis_key[1] + 0x00, SE_KEY_128_SIZE); se_aes_key_set(KS_BIS_01_TWEAK, keys->bis_key[1] + 0x10, SE_KEY_128_SIZE); // SYSTEM/USER se_aes_key_set(KS_BIS_02_CRYPT, keys->bis_key[2] + 0x00, SE_KEY_128_SIZE); se_aes_key_set(KS_BIS_02_TWEAK, keys->bis_key[2] + 0x10, SE_KEY_128_SIZE); if (!emummc_storage_set_mmc_partition(EMMC_GPP)) { EPRINTF("Unable to set partition."); return; } if (!decrypt_ssl_rsa_key(keys, titlekey_buffer)) { EPRINTF("Unable to derive SSL key."); } if (!decrypt_eticket_rsa_key(keys, titlekey_buffer, is_dev)) { EPRINTF("Unable to derive ETicket key."); } // Parse eMMC GPT LIST_INIT(gpt); nx_emmc_gpt_parse(&gpt, &emmc_storage); emmc_part_t *system_part = nx_emmc_part_find(&gpt, "SYSTEM"); if (!system_part) { EPRINTF("Unable to locate System partition."); nx_emmc_gpt_free(&gpt); return; } nx_emmc_bis_init(system_part); if (f_mount(&emmc_fs, "bis:", 1)) { EPRINTF("Unable to mount system partition."); nx_emmc_gpt_free(&gpt); return; } if (!sd_mount()) { EPRINTF("Unable to mount SD."); } else if (!_derive_sd_seed(keys)) { EPRINTF("Unable to get SD seed."); } if (!_derive_titlekeys(keys, titlekey_buffer, is_dev)) { EPRINTF("Unable to derive titlekeys."); } f_mount(NULL, "bis:", 1); nx_emmc_gpt_free(&gpt); } // The security engine supports partial key override for locked keyslots // This allows for a manageable brute force on a PC // Then the Mariko AES class keys, KEK, BEK, unique SBK and SSK can be recovered int save_mariko_partial_keys(u32 start, u32 count, bool append) { const char *keyfile_path = "sd:/switch/partialaes.keys"; if (!f_stat(keyfile_path, NULL)) { f_unlink(keyfile_path); } if (start + count > SE_AES_KEYSLOT_COUNT) { return 1; } display_backlight_brightness(h_cfg.backlight, 1000); gfx_clear_partial_grey(0x1B, 32, 1224); gfx_con_setpos(0, 32); color_idx = 0; u32 pos = 0; u32 zeros[SE_KEY_128_SIZE / 4] = {0}; u8 *data = malloc(4 * SE_KEY_128_SIZE); char *text_buffer = calloc(count, 0x100); for (u32 ks = start; ks < start + count; ks++) { // Check if key is as expected if (ks < ARRAY_SIZE(mariko_key_vectors)) { se_aes_crypt_block_ecb(ks, DECRYPT, &data[0], mariko_key_vectors[ks]); if (key_exists(data)) { EPRINTFARGS("Failed to validate keyslot %d.", ks); continue; } } // Encrypt zeros with complete key se_aes_crypt_block_ecb(ks, ENCRYPT, &data[3 * SE_KEY_128_SIZE], zeros); // We only need to overwrite 3 of the dwords of the key for (u32 i = 0; i < 3; i++) { // Overwrite ith dword of key with zeros se_aes_key_partial_set(ks, i, 0); // Encrypt zeros with more of the key zeroed out se_aes_crypt_block_ecb(ks, ENCRYPT, &data[(2 - i) * SE_KEY_128_SIZE], zeros); } // Skip saving key if two results are the same indicating unsuccessful overwrite or empty slot if (memcmp(&data[0], &data[SE_KEY_128_SIZE], SE_KEY_128_SIZE) == 0) { EPRINTFARGS("Failed to overwrite keyslot %d.", ks); continue; } pos += s_printf(&text_buffer[pos], "%d\n", ks); for (u32 i = 0; i < 4; i++) { for (u32 j = 0; j < SE_KEY_128_SIZE; j++) pos += s_printf(&text_buffer[pos], "%02x", data[i * SE_KEY_128_SIZE + j]); pos += s_printf(&text_buffer[pos], " "); } pos += s_printf(&text_buffer[pos], "\n"); } free(data); if (strlen(text_buffer) == 0) { EPRINTFARGS("Failed to dump partial keys %d-%d.", start, start + count - 1); free(text_buffer); return 2; } FIL fp; BYTE mode = FA_WRITE; if (append) { mode |= FA_OPEN_APPEND; } else { mode |= FA_CREATE_ALWAYS; } if (!sd_mount()) { EPRINTF("Unable to mount SD."); free(text_buffer); return 3; } if (f_open(&fp, keyfile_path, mode)) { EPRINTF("Unable to write partial keys to SD."); free(text_buffer); return 3; } f_write(&fp, text_buffer, strlen(text_buffer), NULL); f_close(&fp); gfx_printf("%kWrote partials to %s\n", colors[(color_idx++) % 6], keyfile_path); free(text_buffer); return 0; } static void _save_keys_to_sd(key_storage_t *keys, titlekey_buffer_t *titlekey_buffer, bool is_dev) { if (!sd_mount()) { EPRINTF("Unable to mount SD."); return; } u32 text_buffer_size = MAX(_titlekey_count * sizeof(titlekey_text_buffer_t) + 1, SZ_16K); char *text_buffer = (char *)calloc(1, text_buffer_size); SAVE_KEY(aes_kek_generation_source); SAVE_KEY(aes_key_generation_source); SAVE_KEY(bis_kek_source); SAVE_KEY_FAMILY_VAR(bis_key, keys->bis_key, 0); SAVE_KEY_FAMILY_VAR(bis_key_source, bis_key_sources, 0); SAVE_KEY_VAR(device_key, keys->device_key); SAVE_KEY_VAR(device_key_4x, keys->device_key_4x); SAVE_KEY_VAR(eticket_rsa_kek, keys->eticket_rsa_kek); SAVE_KEY_VAR(eticket_rsa_kek_personalized, keys->eticket_rsa_kek_personalized); if (is_dev) { SAVE_KEY_VAR(eticket_rsa_kek_source, eticket_rsa_kek_source_dev); } else { SAVE_KEY(eticket_rsa_kek_source); } SAVE_KEY(eticket_rsa_kekek_source); _save_key("eticket_rsa_keypair", &keys->eticket_rsa_keypair, sizeof(keys->eticket_rsa_keypair), text_buffer); SAVE_KEY(header_kek_source); SAVE_KEY_VAR(header_key, keys->header_key); SAVE_KEY(header_key_source); SAVE_KEY_FAMILY_VAR(key_area_key_application, keys->key_area_key[0], 0); SAVE_KEY_VAR(key_area_key_application_source, key_area_key_sources[0]); SAVE_KEY_FAMILY_VAR(key_area_key_ocean, keys->key_area_key[1], 0); SAVE_KEY_VAR(key_area_key_ocean_source, key_area_key_sources[1]); SAVE_KEY_FAMILY_VAR(key_area_key_system, keys->key_area_key[2], 0); SAVE_KEY_VAR(key_area_key_system_source, key_area_key_sources[2]); SAVE_KEY_FAMILY_VAR(keyblob, keys->keyblob, 0); SAVE_KEY_FAMILY_VAR(keyblob_key, keys->keyblob_key, 0); SAVE_KEY_FAMILY_VAR(keyblob_key_source, keyblob_key_sources, 0); SAVE_KEY_FAMILY_VAR(keyblob_mac_key, keys->keyblob_mac_key, 0); SAVE_KEY(keyblob_mac_key_source); if (is_dev) { SAVE_KEY_FAMILY_VAR(mariko_master_kek_source, mariko_master_kek_sources_dev, KB_FIRMWARE_VERSION_600); } else { SAVE_KEY_FAMILY_VAR(mariko_master_kek_source, mariko_master_kek_sources, KB_FIRMWARE_VERSION_600); } SAVE_KEY_FAMILY_VAR(master_kek, keys->master_kek, 0); SAVE_KEY_FAMILY_VAR(master_kek_source, master_kek_sources, KB_FIRMWARE_VERSION_620); SAVE_KEY_FAMILY_VAR(master_key, keys->master_key, 0); SAVE_KEY(master_key_source); SAVE_KEY_FAMILY_VAR(package1_key, keys->package1_key, 0); SAVE_KEY_FAMILY_VAR(package2_key, keys->package2_key, 0); SAVE_KEY(package2_key_source); SAVE_KEY(per_console_key_source); SAVE_KEY(retail_specific_aes_key_source); SAVE_KEY(save_mac_kek_source); SAVE_KEY_VAR(save_mac_key, keys->save_mac_key); SAVE_KEY(save_mac_key_source); SAVE_KEY(save_mac_sd_card_kek_source); SAVE_KEY(save_mac_sd_card_key_source); SAVE_KEY(sd_card_custom_storage_key_source); SAVE_KEY(sd_card_kek_source); SAVE_KEY(sd_card_nca_key_source); SAVE_KEY(sd_card_save_key_source); SAVE_KEY_VAR(sd_seed, keys->sd_seed); SAVE_KEY_VAR(secure_boot_key, keys->secure_boot_key); SAVE_KEY_VAR(ssl_rsa_kek, keys->ssl_rsa_kek); SAVE_KEY_VAR(ssl_rsa_kek_personalized, keys->ssl_rsa_kek_personalized); if (is_dev) { SAVE_KEY_VAR(ssl_rsa_kek_source, ssl_rsa_kek_source_dev); } else { SAVE_KEY(ssl_rsa_kek_source); } SAVE_KEY(ssl_rsa_kekek_source); _save_key("ssl_rsa_key", keys->ssl_rsa_key, SE_RSA2048_DIGEST_SIZE, text_buffer); SAVE_KEY_FAMILY_VAR(titlekek, keys->titlekek, 0); SAVE_KEY(titlekek_source); SAVE_KEY_VAR(tsec_key, keys->tsec_key); char root_key_name[21] = "tsec_root_key_00"; s_printf(root_key_name + 14, "%02x", TSEC_ROOT_KEY_VERSION); _save_key(root_key_name, keys->tsec_root_key, SE_KEY_128_SIZE, text_buffer); gfx_printf("\n%k Found %d %s keys.\n\n", colors[(color_idx++) % 6], _key_count, is_dev ? "dev" : "prod"); gfx_printf("%kFound through master_key_%02x.\n\n", colors[(color_idx++) % 6], KB_FIRMWARE_VERSION_MAX); f_mkdir("sd:/switch"); const char *keyfile_path = is_dev ? "sd:/switch/dev.keys" : "sd:/switch/prod.keys"; FILINFO fno; if (!sd_save_to_file(text_buffer, strlen(text_buffer), keyfile_path) && !f_stat(keyfile_path, &fno)) { gfx_printf("%kWrote %d bytes to %s\n", colors[(color_idx++) % 6], (u32)fno.fsize, keyfile_path); } else { EPRINTF("Unable to save keys to SD."); } if (_titlekey_count == 0 || !titlekey_buffer) { free(text_buffer); return; } memset(text_buffer, 0, text_buffer_size); titlekey_text_buffer_t *titlekey_text = (titlekey_text_buffer_t *)text_buffer; for (u32 i = 0; i < _titlekey_count; i++) { for (u32 j = 0; j < SE_KEY_128_SIZE; j++) s_printf(&titlekey_text[i].rights_id[j * 2], "%02x", titlekey_buffer->rights_ids[i][j]); s_printf(titlekey_text[i].equals, " = "); for (u32 j = 0; j < SE_KEY_128_SIZE; j++) s_printf(&titlekey_text[i].titlekey[j * 2], "%02x", titlekey_buffer->titlekeys[i][j]); s_printf(titlekey_text[i].newline, "\n"); } keyfile_path = "sd:/switch/title.keys"; if (!sd_save_to_file(text_buffer, strlen(text_buffer), keyfile_path) && !f_stat(keyfile_path, &fno)) { gfx_printf("%kWrote %d bytes to %s\n", colors[(color_idx++) % 6], (u32)fno.fsize, keyfile_path); } else { EPRINTF("Unable to save titlekeys to SD."); } free(text_buffer); } static void _derive_keys() { minerva_periodic_training(); if (!check_keyslot_access()) { EPRINTF("Unable to set crypto keyslots!\nTry launching payload differently\n or flash Spacecraft-NX if using a modchip."); return; } u32 start_whole_operation_time = get_tmr_us(); if (emummc_storage_init_mmc()) { EPRINTF("Unable to init MMC."); } else { TPRINTFARGS("%kMMC init... ", colors[(color_idx++) % 6]); } minerva_periodic_training(); if (emmc_storage.initialized && !emummc_storage_set_mmc_partition(EMMC_BOOT0)) { EPRINTF("Unable to set partition."); emummc_storage_end(); } bool is_dev = fuse_read_hw_state() == FUSE_NX_HW_STATE_DEV; key_storage_t __attribute__((aligned(4))) prod_keys = {0}, dev_keys = {0}; key_storage_t *keys = is_dev ? &dev_keys : &prod_keys; _derive_master_keys(&prod_keys, &dev_keys, is_dev); TPRINTFARGS("%kMaster keys... ", colors[(color_idx++) % 6]); _derive_bis_keys(keys); TPRINTFARGS("%kBIS keys... ", colors[(color_idx++) % 6]); _derive_misc_keys(keys); _derive_non_unique_keys(&prod_keys, is_dev); _derive_non_unique_keys(&dev_keys, is_dev); titlekey_buffer_t *titlekey_buffer = (titlekey_buffer_t *)TITLEKEY_BUF_ADR; // Requires BIS key for SYSTEM partition if (!emmc_storage.initialized) { EPRINTF("eMMC not initialized.\nSkipping SD seed and titlekeys."); } else if (key_exists(keys->bis_key[2])) { _derive_emmc_keys(keys, titlekey_buffer, is_dev); } else { EPRINTF("Missing needed BIS keys.\nSkipping SD seed and titlekeys."); } end_time = get_tmr_us(); gfx_printf("%kLockpick totally done in %d us\n", colors[(color_idx++) % 6], end_time - start_whole_operation_time); if (h_cfg.t210b01) { // On Mariko, save only relevant key set _save_keys_to_sd(keys, titlekey_buffer, is_dev); } else { // On Erista, save both prod and dev key sets _save_keys_to_sd(&prod_keys, titlekey_buffer, false); _key_count = 0; _save_keys_to_sd(&dev_keys, NULL, true); } } void derive_amiibo_keys() { minerva_change_freq(FREQ_1600); bool is_dev = fuse_read_hw_state() == FUSE_NX_HW_STATE_DEV; key_storage_t __attribute__((aligned(4))) prod_keys = {0}, dev_keys = {0}; key_storage_t *keys = is_dev ? &dev_keys : &prod_keys; _derive_master_keys(&prod_keys, &dev_keys, is_dev); minerva_periodic_training(); display_backlight_brightness(h_cfg.backlight, 1000); gfx_clear_partial_grey(0x1B, 32, 1224); gfx_con_setpos(0, 32); color_idx = 0; minerva_periodic_training(); if (!key_exists(keys->master_key[0])) { EPRINTF("Unable to derive master keys for NFC."); minerva_change_freq(FREQ_800); btn_wait(); return; } nfc_save_key_t __attribute__((aligned(4))) nfc_save_keys[2] = {0}; nfc_decrypt_amiibo_keys(keys, nfc_save_keys, is_dev); minerva_periodic_training(); u32 hash[SE_SHA_256_SIZE / 4] = {0}; se_calc_sha256_oneshot(hash, &nfc_save_keys[0], sizeof(nfc_save_keys)); if (memcmp(hash, is_dev ? nfc_blob_hash_dev : nfc_blob_hash, sizeof(hash)) != 0) { EPRINTF("Amiibo hash mismatch. Skipping save."); } else { const char *keyfile_path = is_dev ? "sd:/switch/key_dev.bin" : "sd:/switch/key_retail.bin"; if (!sd_save_to_file(&nfc_save_keys[0], sizeof(nfc_save_keys), keyfile_path)) { gfx_printf("%kWrote Amiibo keys to\n %s\n", colors[(color_idx++) % 6], keyfile_path); } else { EPRINTF("Unable to save Amiibo keys to SD."); } } gfx_printf("\n%kPress a button to return to the menu.", colors[(color_idx++) % 6]); minerva_change_freq(FREQ_800); btn_wait(); gfx_clear_grey(0x1B); } void dump_keys() { minerva_change_freq(FREQ_1600); display_backlight_brightness(h_cfg.backlight, 1000); gfx_clear_grey(0x1B); gfx_con_setpos(0, 0); gfx_printf("[%kLo%kck%kpi%kck%k_R%kCM%k v%d.%d.%d%k]\n\n", colors[0], colors[1], colors[2], colors[3], colors[4], colors[5], 0xFFFF00FF, LP_VER_MJ, LP_VER_MN, LP_VER_BF, 0xFFCCCCCC); _key_count = 0; _titlekey_count = 0; color_idx = 0; start_time = get_tmr_us(); _derive_keys(); emummc_load_cfg(); // Ignore whether emummc is enabled. h_cfg.emummc_force_disable = emu_cfg.sector == 0 && !emu_cfg.path; emu_cfg.enabled = !h_cfg.emummc_force_disable; if (emmc_storage.initialized) { sdmmc_storage_end(&emmc_storage); } minerva_change_freq(FREQ_800); gfx_printf("\n%kPress VOL+ to save a screenshot\n or another button to return to the menu.\n\n", colors[(color_idx++) % 6]); u8 btn = btn_wait(); if (btn == BTN_VOL_UP) { int res = save_fb_to_bmp(); if (!res) { gfx_printf("%kScreenshot sd:/switch/lockpick_rcm.bmp saved.", colors[(color_idx++) % 6]); } else { EPRINTF("Screenshot failed."); } gfx_printf("\n%kPress a button to return to the menu.", colors[(color_idx++) % 6]); btn_wait(); } gfx_clear_grey(0x1B); }