diff --git a/src/core/CMakeLists.txt b/src/core/CMakeLists.txt
index 5afdeb5ff..3eee1cfbe 100644
--- a/src/core/CMakeLists.txt
+++ b/src/core/CMakeLists.txt
@@ -182,6 +182,8 @@ add_library(core STATIC
     hle/kernel/k_auto_object_container.cpp
     hle/kernel/k_auto_object_container.h
     hle/kernel/k_affinity_mask.h
+    hle/kernel/k_capabilities.cpp
+    hle/kernel/k_capabilities.h
     hle/kernel/k_class_token.cpp
     hle/kernel/k_class_token.h
     hle/kernel/k_client_port.cpp
diff --git a/src/core/hardware_properties.h b/src/core/hardware_properties.h
index 13cbdb734..45567b840 100644
--- a/src/core/hardware_properties.h
+++ b/src/core/hardware_properties.h
@@ -25,6 +25,26 @@ constexpr std::array<s32, Common::BitSize<u64>()> VirtualToPhysicalCoreMap{
     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3,
 };
 
+static constexpr inline size_t NumVirtualCores = Common::BitSize<u64>();
+
+static constexpr inline u64 VirtualCoreMask = [] {
+    u64 mask = 0;
+    for (size_t i = 0; i < NumVirtualCores; ++i) {
+        mask |= (UINT64_C(1) << i);
+    }
+    return mask;
+}();
+
+static constexpr inline u64 ConvertVirtualCoreMaskToPhysical(u64 v_core_mask) {
+    u64 p_core_mask = 0;
+    while (v_core_mask != 0) {
+        const u64 next = std::countr_zero(v_core_mask);
+        v_core_mask &= ~(static_cast<u64>(1) << next);
+        p_core_mask |= (static_cast<u64>(1) << VirtualToPhysicalCoreMap[next]);
+    }
+    return p_core_mask;
+}
+
 // Cortex-A57 supports 4 memory watchpoints
 constexpr u64 NUM_WATCHPOINTS = 4;
 
diff --git a/src/core/hle/kernel/k_capabilities.cpp b/src/core/hle/kernel/k_capabilities.cpp
new file mode 100644
index 000000000..64f1d7371
--- /dev/null
+++ b/src/core/hle/kernel/k_capabilities.cpp
@@ -0,0 +1,358 @@
+// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
+// SPDX-License-Identifier: GPL-2.0-or-later
+
+#include "core/hardware_properties.h"
+#include "core/hle/kernel/k_capabilities.h"
+#include "core/hle/kernel/k_memory_layout.h"
+#include "core/hle/kernel/k_page_table.h"
+#include "core/hle/kernel/kernel.h"
+#include "core/hle/kernel/svc_results.h"
+#include "core/hle/kernel/svc_version.h"
+
+namespace Kernel {
+
+Result KCapabilities::InitializeForKIP(std::span<const u32> kern_caps, KPageTable* page_table) {
+    // We're initializing an initial process.
+    m_svc_access_flags.reset();
+    m_irq_access_flags.reset();
+    m_debug_capabilities = 0;
+    m_handle_table_size = 0;
+    m_intended_kernel_version = 0;
+    m_program_type = 0;
+
+    // Initial processes may run on all cores.
+    constexpr u64 VirtMask = Core::Hardware::VirtualCoreMask;
+    constexpr u64 PhysMask = Core::Hardware::ConvertVirtualCoreMaskToPhysical(VirtMask);
+
+    m_core_mask = VirtMask;
+    m_phys_core_mask = PhysMask;
+
+    // Initial processes may use any user priority they like.
+    m_priority_mask = ~0xFULL;
+
+    // Here, Nintendo sets the kernel version to the current kernel version.
+    // We will follow suit and set the version to the highest supported kernel version.
+    KernelVersion intended_kernel_version{};
+    intended_kernel_version.major_version.Assign(Svc::SupportedKernelMajorVersion);
+    intended_kernel_version.minor_version.Assign(Svc::SupportedKernelMinorVersion);
+    m_intended_kernel_version = intended_kernel_version.raw;
+
+    // Parse the capabilities array.
+    R_RETURN(this->SetCapabilities(kern_caps, page_table));
+}
+
+Result KCapabilities::InitializeForUser(std::span<const u32> user_caps, KPageTable* page_table) {
+    // We're initializing a user process.
+    m_svc_access_flags.reset();
+    m_irq_access_flags.reset();
+    m_debug_capabilities = 0;
+    m_handle_table_size = 0;
+    m_intended_kernel_version = 0;
+    m_program_type = 0;
+
+    // User processes must specify what cores/priorities they can use.
+    m_core_mask = 0;
+    m_priority_mask = 0;
+
+    // Parse the user capabilities array.
+    R_RETURN(this->SetCapabilities(user_caps, page_table));
+}
+
+Result KCapabilities::SetCorePriorityCapability(const u32 cap) {
+    // We can't set core/priority if we've already set them.
+    R_UNLESS(m_core_mask == 0, ResultInvalidArgument);
+    R_UNLESS(m_priority_mask == 0, ResultInvalidArgument);
+
+    // Validate the core/priority.
+    CorePriority pack{cap};
+    const u32 min_core = pack.minimum_core_id;
+    const u32 max_core = pack.maximum_core_id;
+    const u32 max_prio = pack.lowest_thread_priority;
+    const u32 min_prio = pack.highest_thread_priority;
+
+    R_UNLESS(min_core <= max_core, ResultInvalidCombination);
+    R_UNLESS(min_prio <= max_prio, ResultInvalidCombination);
+    R_UNLESS(max_core < Core::Hardware::NumVirtualCores, ResultInvalidCoreId);
+
+    ASSERT(max_prio < Common::BitSize<u64>());
+
+    // Set core mask.
+    for (auto core_id = min_core; core_id <= max_core; core_id++) {
+        m_core_mask |= (1ULL << core_id);
+    }
+    ASSERT((m_core_mask & Core::Hardware::VirtualCoreMask) == m_core_mask);
+
+    // Set physical core mask.
+    m_phys_core_mask = Core::Hardware::ConvertVirtualCoreMaskToPhysical(m_core_mask);
+
+    // Set priority mask.
+    for (auto prio = min_prio; prio <= max_prio; prio++) {
+        m_priority_mask |= (1ULL << prio);
+    }
+
+    // We must have some core/priority we can use.
+    R_UNLESS(m_core_mask != 0, ResultInvalidArgument);
+    R_UNLESS(m_priority_mask != 0, ResultInvalidArgument);
+
+    // Processes must not have access to kernel thread priorities.
+    R_UNLESS((m_priority_mask & 0xF) == 0, ResultInvalidArgument);
+
+    R_SUCCEED();
+}
+
+Result KCapabilities::SetSyscallMaskCapability(const u32 cap, u32& set_svc) {
+    // Validate the index.
+    SyscallMask pack{cap};
+    const u32 mask = pack.mask;
+    const u32 index = pack.index;
+
+    const u32 index_flag = (1U << index);
+    R_UNLESS((set_svc & index_flag) == 0, ResultInvalidCombination);
+    set_svc |= index_flag;
+
+    // Set SVCs.
+    for (size_t i = 0; i < decltype(SyscallMask::mask)::bits; i++) {
+        const u32 svc_id = static_cast<u32>(decltype(SyscallMask::mask)::bits * index + i);
+        if (mask & (1U << i)) {
+            R_UNLESS(this->SetSvcAllowed(svc_id), ResultOutOfRange);
+        }
+    }
+
+    R_SUCCEED();
+}
+
+Result KCapabilities::MapRange_(const u32 cap, const u32 size_cap, KPageTable* page_table) {
+    const auto range_pack = MapRange{cap};
+    const auto size_pack = MapRangeSize{size_cap};
+
+    // Get/validate address/size
+    const u64 phys_addr = range_pack.address.Value() * PageSize;
+
+    // Validate reserved bits are unused.
+    R_UNLESS(size_pack.reserved.Value() == 0, ResultOutOfRange);
+
+    const size_t num_pages = size_pack.pages;
+    const size_t size = num_pages * PageSize;
+    R_UNLESS(num_pages != 0, ResultInvalidSize);
+    R_UNLESS(phys_addr < phys_addr + size, ResultInvalidAddress);
+    R_UNLESS(((phys_addr + size - 1) & ~PhysicalMapAllowedMask) == 0, ResultInvalidAddress);
+
+    // Do the mapping.
+    [[maybe_unused]] const KMemoryPermission perm = range_pack.read_only.Value()
+                                                        ? KMemoryPermission::UserRead
+                                                        : KMemoryPermission::UserReadWrite;
+    if (MapRangeSize{size_cap}.normal) {
+        // R_RETURN(page_table->MapStatic(phys_addr, size, perm));
+    } else {
+        // R_RETURN(page_table->MapIo(phys_addr, size, perm));
+    }
+
+    UNIMPLEMENTED();
+    R_SUCCEED();
+}
+
+Result KCapabilities::MapIoPage_(const u32 cap, KPageTable* page_table) {
+    // Get/validate address/size
+    const u64 phys_addr = MapIoPage{cap}.address.Value() * PageSize;
+    const size_t num_pages = 1;
+    const size_t size = num_pages * PageSize;
+    R_UNLESS(num_pages != 0, ResultInvalidSize);
+    R_UNLESS(phys_addr < phys_addr + size, ResultInvalidAddress);
+    R_UNLESS(((phys_addr + size - 1) & ~PhysicalMapAllowedMask) == 0, ResultInvalidAddress);
+
+    // Do the mapping.
+    // R_RETURN(page_table->MapIo(phys_addr, size, KMemoryPermission_UserReadWrite));
+
+    UNIMPLEMENTED();
+    R_SUCCEED();
+}
+
+template <typename F>
+Result KCapabilities::ProcessMapRegionCapability(const u32 cap, F f) {
+    // Define the allowed memory regions.
+    constexpr std::array<KMemoryRegionType, 4> MemoryRegions{
+        KMemoryRegionType_None,
+        KMemoryRegionType_KernelTraceBuffer,
+        KMemoryRegionType_OnMemoryBootImage,
+        KMemoryRegionType_DTB,
+    };
+
+    // Extract regions/read only.
+    const MapRegion pack{cap};
+    const std::array<RegionType, 3> types{pack.region0, pack.region1, pack.region2};
+    const std::array<u32, 3> ro{pack.read_only0, pack.read_only1, pack.read_only2};
+
+    for (size_t i = 0; i < types.size(); i++) {
+        const auto type = types[i];
+        const auto perm = ro[i] ? KMemoryPermission::UserRead : KMemoryPermission::UserReadWrite;
+        switch (type) {
+        case RegionType::NoMapping:
+            break;
+        case RegionType::KernelTraceBuffer:
+        case RegionType::OnMemoryBootImage:
+        case RegionType::DTB:
+            R_TRY(f(MemoryRegions[static_cast<u32>(type)], perm));
+            break;
+        default:
+            R_THROW(ResultNotFound);
+        }
+    }
+
+    R_SUCCEED();
+}
+
+Result KCapabilities::MapRegion_(const u32 cap, KPageTable* page_table) {
+    // Map each region into the process's page table.
+    R_RETURN(ProcessMapRegionCapability(
+        cap, [](KMemoryRegionType region_type, KMemoryPermission perm) -> Result {
+            // R_RETURN(page_table->MapRegion(region_type, perm));
+            UNIMPLEMENTED();
+            R_SUCCEED();
+        }));
+}
+
+Result KCapabilities::CheckMapRegion(KernelCore& kernel, const u32 cap) {
+    // Check that each region has a physical backing store.
+    R_RETURN(ProcessMapRegionCapability(
+        cap, [&](KMemoryRegionType region_type, KMemoryPermission perm) -> Result {
+            R_UNLESS(kernel.MemoryLayout().GetPhysicalMemoryRegionTree().FindFirstDerived(
+                         region_type) != nullptr,
+                     ResultOutOfRange);
+            R_SUCCEED();
+        }));
+}
+
+Result KCapabilities::SetInterruptPairCapability(const u32 cap) {
+    // Extract interrupts.
+    const InterruptPair pack{cap};
+    const std::array<u32, 2> ids{pack.interrupt_id0, pack.interrupt_id1};
+
+    for (size_t i = 0; i < ids.size(); i++) {
+        if (ids[i] != PaddingInterruptId) {
+            UNIMPLEMENTED();
+            // R_UNLESS(Kernel::GetInterruptManager().IsInterruptDefined(ids[i]), ResultOutOfRange);
+            // R_UNLESS(this->SetInterruptPermitted(ids[i]), ResultOutOfRange);
+        }
+    }
+
+    R_SUCCEED();
+}
+
+Result KCapabilities::SetProgramTypeCapability(const u32 cap) {
+    // Validate.
+    const ProgramType pack{cap};
+    R_UNLESS(pack.reserved == 0, ResultReservedUsed);
+
+    m_program_type = pack.type;
+    R_SUCCEED();
+}
+
+Result KCapabilities::SetKernelVersionCapability(const u32 cap) {
+    // Ensure we haven't set our version before.
+    R_UNLESS(KernelVersion{m_intended_kernel_version}.major_version == 0, ResultInvalidArgument);
+
+    // Set, ensure that we set a valid version.
+    m_intended_kernel_version = cap;
+    R_UNLESS(KernelVersion{m_intended_kernel_version}.major_version != 0, ResultInvalidArgument);
+
+    R_SUCCEED();
+}
+
+Result KCapabilities::SetHandleTableCapability(const u32 cap) {
+    // Validate.
+    const HandleTable pack{cap};
+    R_UNLESS(pack.reserved == 0, ResultReservedUsed);
+
+    m_handle_table_size = pack.size;
+    R_SUCCEED();
+}
+
+Result KCapabilities::SetDebugFlagsCapability(const u32 cap) {
+    // Validate.
+    const DebugFlags pack{cap};
+    R_UNLESS(pack.reserved == 0, ResultReservedUsed);
+
+    DebugFlags debug_capabilities{m_debug_capabilities};
+    debug_capabilities.allow_debug.Assign(pack.allow_debug);
+    debug_capabilities.force_debug.Assign(pack.force_debug);
+    m_debug_capabilities = debug_capabilities.raw;
+
+    R_SUCCEED();
+}
+
+Result KCapabilities::SetCapability(const u32 cap, u32& set_flags, u32& set_svc,
+                                    KPageTable* page_table) {
+    // Validate this is a capability we can act on.
+    const auto type = GetCapabilityType(cap);
+    R_UNLESS(type != CapabilityType::Invalid, ResultInvalidArgument);
+
+    // If the type is padding, we have no work to do.
+    R_SUCCEED_IF(type == CapabilityType::Padding);
+
+    // Check that we haven't already processed this capability.
+    const auto flag = GetCapabilityFlag(type);
+    R_UNLESS(((set_flags & InitializeOnceFlags) & flag) == 0, ResultInvalidCombination);
+    set_flags |= flag;
+
+    // Process the capability.
+    switch (type) {
+    case CapabilityType::CorePriority:
+        R_RETURN(this->SetCorePriorityCapability(cap));
+    case CapabilityType::SyscallMask:
+        R_RETURN(this->SetSyscallMaskCapability(cap, set_svc));
+    case CapabilityType::MapIoPage:
+        R_RETURN(this->MapIoPage_(cap, page_table));
+    case CapabilityType::MapRegion:
+        R_RETURN(this->MapRegion_(cap, page_table));
+    case CapabilityType::InterruptPair:
+        R_RETURN(this->SetInterruptPairCapability(cap));
+    case CapabilityType::ProgramType:
+        R_RETURN(this->SetProgramTypeCapability(cap));
+    case CapabilityType::KernelVersion:
+        R_RETURN(this->SetKernelVersionCapability(cap));
+    case CapabilityType::HandleTable:
+        R_RETURN(this->SetHandleTableCapability(cap));
+    case CapabilityType::DebugFlags:
+        R_RETURN(this->SetDebugFlagsCapability(cap));
+    default:
+        R_THROW(ResultInvalidArgument);
+    }
+}
+
+Result KCapabilities::SetCapabilities(std::span<const u32> caps, KPageTable* page_table) {
+    u32 set_flags = 0, set_svc = 0;
+
+    for (size_t i = 0; i < caps.size(); i++) {
+        const u32 cap{caps[i]};
+
+        if (GetCapabilityType(cap) == CapabilityType::MapRange) {
+            // Check that the pair cap exists.
+            R_UNLESS((++i) < caps.size(), ResultInvalidCombination);
+
+            // Check the pair cap is a map range cap.
+            const u32 size_cap{caps[i]};
+            R_UNLESS(GetCapabilityType(size_cap) == CapabilityType::MapRange,
+                     ResultInvalidCombination);
+
+            // Map the range.
+            R_TRY(this->MapRange_(cap, size_cap, page_table));
+        } else {
+            R_TRY(this->SetCapability(cap, set_flags, set_svc, page_table));
+        }
+    }
+
+    R_SUCCEED();
+}
+
+Result KCapabilities::CheckCapabilities(KernelCore& kernel, std::span<const u32> caps) {
+    for (auto cap : caps) {
+        // Check the capability refers to a valid region.
+        if (GetCapabilityType(cap) == CapabilityType::MapRegion) {
+            R_TRY(CheckMapRegion(kernel, cap));
+        }
+    }
+
+    R_SUCCEED();
+}
+
+} // namespace Kernel
diff --git a/src/core/hle/kernel/k_capabilities.h b/src/core/hle/kernel/k_capabilities.h
new file mode 100644
index 000000000..cd96f8d23
--- /dev/null
+++ b/src/core/hle/kernel/k_capabilities.h
@@ -0,0 +1,295 @@
+
+// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
+// SPDX-License-Identifier: GPL-2.0-or-later
+
+#pragma once
+
+#include <bitset>
+#include <span>
+
+#include "common/bit_field.h"
+#include "common/common_types.h"
+
+#include "core/hle/kernel/svc_types.h"
+#include "core/hle/result.h"
+
+namespace Kernel {
+
+class KPageTable;
+class KernelCore;
+
+class KCapabilities {
+public:
+    constexpr explicit KCapabilities() = default;
+
+    Result InitializeForKIP(std::span<const u32> kern_caps, KPageTable* page_table);
+    Result InitializeForUser(std::span<const u32> user_caps, KPageTable* page_table);
+
+    static Result CheckCapabilities(KernelCore& kernel, std::span<const u32> user_caps);
+
+    constexpr u64 GetCoreMask() const {
+        return m_core_mask;
+    }
+
+    constexpr u64 GetPhysicalCoreMask() const {
+        return m_phys_core_mask;
+    }
+
+    constexpr u64 GetPriorityMask() const {
+        return m_priority_mask;
+    }
+
+    constexpr s32 GetHandleTableSize() const {
+        return m_handle_table_size;
+    }
+
+    constexpr const Svc::SvcAccessFlagSet& GetSvcPermissions() const {
+        return m_svc_access_flags;
+    }
+
+    constexpr bool IsPermittedSvc(u32 id) const {
+        return (id < m_svc_access_flags.size()) && m_svc_access_flags[id];
+    }
+
+    constexpr bool IsPermittedInterrupt(u32 id) const {
+        return (id < m_irq_access_flags.size()) && m_irq_access_flags[id];
+    }
+
+    constexpr bool IsPermittedDebug() const {
+        return DebugFlags{m_debug_capabilities}.allow_debug.Value() != 0;
+    }
+
+    constexpr bool CanForceDebug() const {
+        return DebugFlags{m_debug_capabilities}.force_debug.Value() != 0;
+    }
+
+    constexpr u32 GetIntendedKernelMajorVersion() const {
+        return KernelVersion{m_intended_kernel_version}.major_version;
+    }
+
+    constexpr u32 GetIntendedKernelMinorVersion() const {
+        return KernelVersion{m_intended_kernel_version}.minor_version;
+    }
+
+private:
+    static constexpr size_t InterruptIdCount = 0x400;
+    using InterruptFlagSet = std::bitset<InterruptIdCount>;
+
+    enum class CapabilityType : u32 {
+        CorePriority = (1U << 3) - 1,
+        SyscallMask = (1U << 4) - 1,
+        MapRange = (1U << 6) - 1,
+        MapIoPage = (1U << 7) - 1,
+        MapRegion = (1U << 10) - 1,
+        InterruptPair = (1U << 11) - 1,
+        ProgramType = (1U << 13) - 1,
+        KernelVersion = (1U << 14) - 1,
+        HandleTable = (1U << 15) - 1,
+        DebugFlags = (1U << 16) - 1,
+
+        Invalid = 0U,
+        Padding = ~0U,
+    };
+
+    using RawCapabilityValue = u32;
+
+    static constexpr CapabilityType GetCapabilityType(const RawCapabilityValue value) {
+        return static_cast<CapabilityType>((~value & (value + 1)) - 1);
+    }
+
+    static constexpr u32 GetCapabilityFlag(CapabilityType type) {
+        return static_cast<u32>(type) + 1;
+    }
+
+    template <CapabilityType Type>
+    static constexpr inline u32 CapabilityFlag = static_cast<u32>(Type) + 1;
+
+    template <CapabilityType Type>
+    static constexpr inline u32 CapabilityId = std::countr_zero(CapabilityFlag<Type>);
+
+    union CorePriority {
+        static_assert(CapabilityId<CapabilityType::CorePriority> + 1 == 4);
+
+        RawCapabilityValue raw;
+        BitField<0, 4, CapabilityType> id;
+        BitField<4, 6, u32> lowest_thread_priority;
+        BitField<10, 6, u32> highest_thread_priority;
+        BitField<16, 8, u32> minimum_core_id;
+        BitField<24, 8, u32> maximum_core_id;
+    };
+
+    union SyscallMask {
+        static_assert(CapabilityId<CapabilityType::SyscallMask> + 1 == 5);
+
+        RawCapabilityValue raw;
+        BitField<0, 5, CapabilityType> id;
+        BitField<5, 24, u32> mask;
+        BitField<29, 3, u32> index;
+    };
+
+    // #undef MESOSPHERE_ENABLE_LARGE_PHYSICAL_ADDRESS_CAPABILITIES
+    static constexpr u64 PhysicalMapAllowedMask = (1ULL << 36) - 1;
+
+    union MapRange {
+        static_assert(CapabilityId<CapabilityType::MapRange> + 1 == 7);
+
+        RawCapabilityValue raw;
+        BitField<0, 7, CapabilityType> id;
+        BitField<7, 24, u32> address;
+        BitField<31, 1, u32> read_only;
+    };
+
+    union MapRangeSize {
+        static_assert(CapabilityId<CapabilityType::MapRange> + 1 == 7);
+
+        RawCapabilityValue raw;
+        BitField<0, 7, CapabilityType> id;
+        BitField<7, 20, u32> pages;
+        BitField<27, 4, u32> reserved;
+        BitField<31, 1, u32> normal;
+    };
+
+    union MapIoPage {
+        static_assert(CapabilityId<CapabilityType::MapIoPage> + 1 == 8);
+
+        RawCapabilityValue raw;
+        BitField<0, 8, CapabilityType> id;
+        BitField<8, 24, u32> address;
+    };
+
+    enum class RegionType : u32 {
+        NoMapping = 0,
+        KernelTraceBuffer = 1,
+        OnMemoryBootImage = 2,
+        DTB = 3,
+    };
+
+    union MapRegion {
+        static_assert(CapabilityId<CapabilityType::MapRegion> + 1 == 11);
+
+        RawCapabilityValue raw;
+        BitField<0, 11, CapabilityType> id;
+        BitField<11, 6, RegionType> region0;
+        BitField<17, 1, u32> read_only0;
+        BitField<18, 6, RegionType> region1;
+        BitField<24, 1, u32> read_only1;
+        BitField<25, 6, RegionType> region2;
+        BitField<31, 1, u32> read_only2;
+    };
+
+    union InterruptPair {
+        static_assert(CapabilityId<CapabilityType::InterruptPair> + 1 == 12);
+
+        RawCapabilityValue raw;
+        BitField<0, 12, CapabilityType> id;
+        BitField<12, 10, u32> interrupt_id0;
+        BitField<22, 10, u32> interrupt_id1;
+    };
+
+    union ProgramType {
+        static_assert(CapabilityId<CapabilityType::ProgramType> + 1 == 14);
+
+        RawCapabilityValue raw;
+        BitField<0, 14, CapabilityType> id;
+        BitField<14, 3, u32> type;
+        BitField<17, 15, u32> reserved;
+    };
+
+    union KernelVersion {
+        static_assert(CapabilityId<CapabilityType::KernelVersion> + 1 == 15);
+
+        RawCapabilityValue raw;
+        BitField<0, 15, CapabilityType> id;
+        BitField<15, 4, u32> major_version;
+        BitField<19, 13, u32> minor_version;
+    };
+
+    union HandleTable {
+        static_assert(CapabilityId<CapabilityType::HandleTable> + 1 == 16);
+
+        RawCapabilityValue raw;
+        BitField<0, 16, CapabilityType> id;
+        BitField<16, 10, u32> size;
+        BitField<26, 6, u32> reserved;
+    };
+
+    union DebugFlags {
+        static_assert(CapabilityId<CapabilityType::DebugFlags> + 1 == 17);
+
+        RawCapabilityValue raw;
+        BitField<0, 17, CapabilityType> id;
+        BitField<17, 1, u32> allow_debug;
+        BitField<18, 1, u32> force_debug;
+        BitField<19, 13, u32> reserved;
+    };
+
+    static_assert(sizeof(CorePriority) == 4);
+    static_assert(sizeof(SyscallMask) == 4);
+    static_assert(sizeof(MapRange) == 4);
+    static_assert(sizeof(MapRangeSize) == 4);
+    static_assert(sizeof(MapIoPage) == 4);
+    static_assert(sizeof(MapRegion) == 4);
+    static_assert(sizeof(InterruptPair) == 4);
+    static_assert(sizeof(ProgramType) == 4);
+    static_assert(sizeof(KernelVersion) == 4);
+    static_assert(sizeof(HandleTable) == 4);
+    static_assert(sizeof(DebugFlags) == 4);
+
+    static constexpr u32 InitializeOnceFlags =
+        CapabilityFlag<CapabilityType::CorePriority> | CapabilityFlag<CapabilityType::ProgramType> |
+        CapabilityFlag<CapabilityType::KernelVersion> |
+        CapabilityFlag<CapabilityType::HandleTable> | CapabilityFlag<CapabilityType::DebugFlags>;
+
+    static const u32 PaddingInterruptId = 0x3FF;
+    static_assert(PaddingInterruptId < InterruptIdCount);
+
+private:
+    constexpr bool SetSvcAllowed(u32 id) {
+        if (id < m_svc_access_flags.size()) [[likely]] {
+            m_svc_access_flags[id] = true;
+            return true;
+        } else {
+            return false;
+        }
+    }
+
+    constexpr bool SetInterruptPermitted(u32 id) {
+        if (id < m_irq_access_flags.size()) [[likely]] {
+            m_irq_access_flags[id] = true;
+            return true;
+        } else {
+            return false;
+        }
+    }
+
+    Result SetCorePriorityCapability(const u32 cap);
+    Result SetSyscallMaskCapability(const u32 cap, u32& set_svc);
+    Result MapRange_(const u32 cap, const u32 size_cap, KPageTable* page_table);
+    Result MapIoPage_(const u32 cap, KPageTable* page_table);
+    Result MapRegion_(const u32 cap, KPageTable* page_table);
+    Result SetInterruptPairCapability(const u32 cap);
+    Result SetProgramTypeCapability(const u32 cap);
+    Result SetKernelVersionCapability(const u32 cap);
+    Result SetHandleTableCapability(const u32 cap);
+    Result SetDebugFlagsCapability(const u32 cap);
+
+    template <typename F>
+    static Result ProcessMapRegionCapability(const u32 cap, F f);
+    static Result CheckMapRegion(KernelCore& kernel, const u32 cap);
+
+    Result SetCapability(const u32 cap, u32& set_flags, u32& set_svc, KPageTable* page_table);
+    Result SetCapabilities(std::span<const u32> caps, KPageTable* page_table);
+
+private:
+    Svc::SvcAccessFlagSet m_svc_access_flags{};
+    InterruptFlagSet m_irq_access_flags{};
+    u64 m_core_mask{};
+    u64 m_phys_core_mask{};
+    u64 m_priority_mask{};
+    u32 m_debug_capabilities{};
+    s32 m_handle_table_size{};
+    u32 m_intended_kernel_version{};
+    u32 m_program_type{};
+};
+
+} // namespace Kernel
diff --git a/src/core/hle/kernel/svc_types.h b/src/core/hle/kernel/svc_types.h
index 33eebcef6..9c2f9998a 100644
--- a/src/core/hle/kernel/svc_types.h
+++ b/src/core/hle/kernel/svc_types.h
@@ -3,6 +3,8 @@
 
 #pragma once
 
+#include <bitset>
+
 #include "common/common_funcs.h"
 #include "common/common_types.h"
 
@@ -592,4 +594,7 @@ struct CreateProcessParameter {
 };
 static_assert(sizeof(CreateProcessParameter) == 0x30);
 
+constexpr size_t NumSupervisorCalls = 0xC0;
+using SvcAccessFlagSet = std::bitset<NumSupervisorCalls>;
+
 } // namespace Kernel::Svc
diff --git a/src/core/hle/kernel/svc_version.h b/src/core/hle/kernel/svc_version.h
new file mode 100644
index 000000000..e4f47b34b
--- /dev/null
+++ b/src/core/hle/kernel/svc_version.h
@@ -0,0 +1,58 @@
+// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
+// SPDX-License-Identifier: GPL-2.0-or-later
+
+#pragma once
+
+#include "common/bit_field.h"
+#include "common/common_types.h"
+#include "common/literals.h"
+
+namespace Kernel::Svc {
+
+constexpr inline u32 ConvertToSvcMajorVersion(u32 sdk) {
+    return sdk + 4;
+}
+constexpr inline u32 ConvertToSdkMajorVersion(u32 svc) {
+    return svc - 4;
+}
+
+constexpr inline u32 ConvertToSvcMinorVersion(u32 sdk) {
+    return sdk;
+}
+constexpr inline u32 ConvertToSdkMinorVersion(u32 svc) {
+    return svc;
+}
+
+union KernelVersion {
+    u32 value;
+    BitField<0, 4, u32> minor_version;
+    BitField<4, 13, u32> major_version;
+};
+
+constexpr inline u32 EncodeKernelVersion(u32 major, u32 minor) {
+    return decltype(KernelVersion::minor_version)::FormatValue(minor) |
+           decltype(KernelVersion::major_version)::FormatValue(major);
+}
+
+constexpr inline u32 GetKernelMajorVersion(u32 encoded) {
+    return std::bit_cast<decltype(KernelVersion::major_version)>(encoded).Value();
+}
+
+constexpr inline u32 GetKernelMinorVersion(u32 encoded) {
+    return std::bit_cast<decltype(KernelVersion::minor_version)>(encoded).Value();
+}
+
+// Nintendo doesn't support programs targeting SVC versions < 3.0.
+constexpr inline u32 RequiredKernelMajorVersion = 3;
+constexpr inline u32 RequiredKernelMinorVersion = 0;
+constexpr inline u32 RequiredKernelVersion =
+    EncodeKernelVersion(RequiredKernelMajorVersion, RequiredKernelMinorVersion);
+
+// This is the highest SVC version supported, to be updated on new kernel releases.
+// NOTE: Official kernel versions have SVC major = SDK major + 4, SVC minor = SDK minor.
+constexpr inline u32 SupportedKernelMajorVersion = ConvertToSvcMajorVersion(15);
+constexpr inline u32 SupportedKernelMinorVersion = ConvertToSvcMinorVersion(3);
+constexpr inline u32 SupportedKernelVersion =
+    EncodeKernelVersion(SupportedKernelMajorVersion, SupportedKernelMinorVersion);
+
+} // namespace Kernel::Svc